These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 22372567)
1. Comparison of accelerated methods for the extraction of phenolic compounds from different vine-shoot cultivars. Delgado-Torre MP; Ferreiro-Vera C; Priego-Capote F; Pérez-Juan PM; Luque de Castro MD J Agric Food Chem; 2012 Mar; 60(12):3051-60. PubMed ID: 22372567 [TBL] [Abstract][Full Text] [Related]
2. Extraction of polyphenols from vine shoots of Vitis vinifera by superheated ethanol-water mixtures. Luque-Rodríguez JM; Pérez-Juan P; Luque de Castro MD J Agric Food Chem; 2006 Nov; 54(23):8775-81. PubMed ID: 17090121 [TBL] [Abstract][Full Text] [Related]
3. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS(2). Taamalli A; Arráez-Román D; Ibañez E; Zarrouk M; Segura-Carretero A; Fernández-Gutiérrez A J Agric Food Chem; 2012 Jan; 60(3):791-8. PubMed ID: 22206342 [TBL] [Abstract][Full Text] [Related]
4. Vine-shoot waste aqueous extracts for re-use in agriculture obtained by different extraction techniques: phenolic, volatile, and mineral compounds. Sánchez-Gómez R; Zalacain A; Alonso GL; Salinas MR J Agric Food Chem; 2014 Nov; 62(45):10861-72. PubMed ID: 25335896 [TBL] [Abstract][Full Text] [Related]
5. Comparative profiling analysis of woody flavouring from vine-shoots and oak chips. Delgado de la Torre MP; Priego-Capote F; Luque de Castro MD J Sci Food Agric; 2014 Feb; 94(3):504-14. PubMed ID: 23794272 [TBL] [Abstract][Full Text] [Related]
6. Comparison of extraction methods for exploitation of grape skin residues from ethanol distillation. Peralbo-Molina Á; Priego-Capote F; Dolores Luque de Castro M Talanta; 2012 Nov; 101():292-8. PubMed ID: 23158325 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the composition of vine shoots and oak chips for oenological purposes by superheated liquid extraction and high-resolution liquid chromatography-time-of-flight/mass spectrometry analysis. Delgado de la Torre MP; Priego-Capote F; Luque de Castro MD J Agric Food Chem; 2012 Apr; 60(13):3409-17. PubMed ID: 22416814 [TBL] [Abstract][Full Text] [Related]
8. Dynamic superheated liquid extraction of anthocyanins and other phenolics from red grape skins of winemaking residues. Luque-Rodríguez JM; Luque de Castro MD; Pérez-Juan P Bioresour Technol; 2007 Oct; 98(14):2705-13. PubMed ID: 17092712 [TBL] [Abstract][Full Text] [Related]
9. Investigation on phenolic compounds stability during microwave-assisted extraction. Liazid A; Palma M; Brigui J; Barroso CG J Chromatogr A; 2007 Jan; 1140(1-2):29-34. PubMed ID: 17141250 [TBL] [Abstract][Full Text] [Related]
10. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Ghafoor K; Choi YH; Jeon JY; Jo IH J Agric Food Chem; 2009 Jun; 57(11):4988-94. PubMed ID: 19405527 [TBL] [Abstract][Full Text] [Related]
11. Microwave-Assisted Extraction of Phenolic Compounds from Almond Skin Byproducts (Prunus amygdalus): A Multivariate Analysis Approach. Valdés A; Vidal L; Beltrán A; Canals A; Garrigós MC J Agric Food Chem; 2015 Jun; 63(22):5395-402. PubMed ID: 26005743 [TBL] [Abstract][Full Text] [Related]
12. Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction. Martino E; Ramaiola I; Urbano M; Bracco F; Collina S J Chromatogr A; 2006 Sep; 1125(2):147-51. PubMed ID: 16769080 [TBL] [Abstract][Full Text] [Related]
13. Antioxidant activity of grape skin aqueous extracts from pressurized hot water extraction combined with electron paramagnetic resonance spectroscopy. Sťavíková L; Polovka M; Hohnová B; Karásek P; Roth M Talanta; 2011 Sep; 85(4):2233-40. PubMed ID: 21872083 [TBL] [Abstract][Full Text] [Related]
14. Enrichment of antioxidant compounds from lemon balm (Melissa officinalis) by pressurized liquid extraction and enzyme-assisted extraction. Miron TL; Herrero M; Ibáñez E J Chromatogr A; 2013 May; 1288():1-9. PubMed ID: 23528869 [TBL] [Abstract][Full Text] [Related]
15. Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling. González-Centeno MR; Comas-Serra F; Femenia A; Rosselló C; Simal S Ultrason Sonochem; 2015 Jan; 22():506-14. PubMed ID: 24970116 [TBL] [Abstract][Full Text] [Related]
16. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Pinelo M; Rubilar M; Jerez M; Sineiro J; Núñez MJ J Agric Food Chem; 2005 Mar; 53(6):2111-7. PubMed ID: 15769143 [TBL] [Abstract][Full Text] [Related]
17. Microwave-assisted extraction of phenolic compounds from grape seed. Hong N; Yaylayan VA; Raghavan GS; Paré JR; Bélanger JM Nat Prod Lett; 2001; 15(3):197-204. PubMed ID: 11858552 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of the effect of auxiliary energies on the extraction of Citrus fruit components. Ledesma-Escobar CA; Priego-Capote F; Luque de Castro MD Talanta; 2015 Nov; 144():522-8. PubMed ID: 26452857 [TBL] [Abstract][Full Text] [Related]
19. Microwave-assisted extraction of phenolics from Canarium album L. and identification of the main phenolic compound. He Z; Xia W Nat Prod Res; 2011 Jan; 25(2):85-92. PubMed ID: 21246434 [TBL] [Abstract][Full Text] [Related]