BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22373004)

  • 1. Stability of building gene regulatory networks with sparse autoregressive models.
    Rajapakse JC; Mundra PA
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S17. PubMed ID: 22373004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inference of gene networks from gene expression time series using recurrent neural networks and sparse MAP estimation.
    Chen CK
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850009. PubMed ID: 30051742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating sparse gene regulatory networks using a bayesian linear regression.
    Sarder P; Schierding W; Cobb JP; Nehorai A
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):121-31. PubMed ID: 20650703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
    Vatsa D; Agarwal S
    PLoS One; 2021; 16(5):e0251666. PubMed ID: 33989333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Sparse Reconstruction Approach for Identifying Gene Regulatory Networks Using Steady-State Experiment Data.
    Zhang W; Zhou T
    PLoS One; 2015; 10(7):e0130979. PubMed ID: 26207991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling gene expression regulatory networks with the sparse vector autoregressive model.
    Fujita A; Sato JR; Garay-Malpartida HM; Yamaguchi R; Miyano S; Sogayar MC; Ferreira CE
    BMC Syst Biol; 2007 Aug; 1():39. PubMed ID: 17761000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIN-KNO: A method of gene regulatory network inference using single-cell transcription and gene knockout data.
    Wang H; Lian Y; Li C; Ma Y; Yan Z; Dong C
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950035. PubMed ID: 32019417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recursive regularization for inferring gene networks from time-course gene expression profiles.
    Shimamura T; Imoto S; Yamaguchi R; Fujita A; Nagasaki M; Miyano S
    BMC Syst Biol; 2009 Apr; 3():41. PubMed ID: 19386091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstructing Genetic Regulatory Networks Using Two-Step Algorithms with the Differential Equation Models of Neural Networks.
    Chen CK
    Interdiscip Sci; 2018 Dec; 10(4):823-835. PubMed ID: 28748400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks.
    Chaitankar V; Ghosh P; Perkins EJ; Gong P; Zhang C
    BMC Bioinformatics; 2010 Oct; 11 Suppl 6(Suppl 6):S19. PubMed ID: 20946602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse engineering module networks by PSO-RNN hybrid modeling.
    Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved Bayesian network method for reconstructing gene regulatory network based on candidate auto selection.
    Xing L; Guo M; Liu X; Wang C; Wang L; Zhang Y
    BMC Genomics; 2017 Nov; 18(Suppl 9):844. PubMed ID: 29219084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of gene regulatory networks from time series by Tsallis entropy.
    Lopes FM; de Oliveira EA; Cesar RM
    BMC Syst Biol; 2011 May; 5():61. PubMed ID: 21545720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambiguity in logic-based models of gene regulatory networks: An integrative multi-perturbation analysis.
    Alizad-Rahvar AR; Sadeghi M
    PLoS One; 2018; 13(11):e0206976. PubMed ID: 30458000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sparse and decomposed particle swarm optimization for inferring gene regulatory networks based on fuzzy cognitive maps.
    Liu L; Liu J
    J Bioinform Comput Biol; 2019 Aug; 17(4):1950023. PubMed ID: 31617458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene Regulatory Network-Classifier: Gene Regulatory Network-Based Classifier and Its Applications to Gastric Cancer Drug (5-Fluorouracil) Marker Identification.
    Park H; Imoto S; Miyano S
    J Comput Biol; 2023 Feb; 30(2):223-243. PubMed ID: 36450117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal Sparsity Selection Based on an Information Criterion for Accurate Gene Regulatory Network Inference.
    Seçilmiş D; Nelander S; Sonnhammer ELL
    Front Genet; 2022; 13():855770. PubMed ID: 35923701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential expression analysis with global network adjustment.
    Gelfond JA; Ibrahim JG; Gupta M; Chen MH; Cody JD
    BMC Bioinformatics; 2013 Aug; 14():258. PubMed ID: 23968143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.