BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22373004)

  • 21. Properties of sparse penalties on inferring gene regulatory networks from time-course gene expression data.
    Liu LZ; Wu FX; Zhang WJ
    IET Syst Biol; 2015 Feb; 9(1):16-24. PubMed ID: 25569860
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An approach for reduction of false predictions in reverse engineering of gene regulatory networks.
    Khan A; Saha G; Pal RK
    J Theor Biol; 2018 May; 445():9-30. PubMed ID: 29462626
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time Delayed Causal Gene Regulatory Network Inference with Hidden Common Causes.
    Lo LY; Wong ML; Lee KH; Leung KS
    PLoS One; 2015; 10(9):e0138596. PubMed ID: 26394325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks.
    Liang J; Han J
    BMC Syst Biol; 2012 Aug; 6():113. PubMed ID: 22929591
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bayesian differential analysis of gene regulatory networks exploiting genetic perturbations.
    Li Y; Liu D; Li T; Zhu Y
    BMC Bioinformatics; 2020 Jan; 21(1):12. PubMed ID: 31918656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unveiling gene regulatory networks during cellular state transitions without linkage across time points.
    Wan R; Zhang Y; Peng Y; Tian F; Gao G; Tang F; Jia J; Ge H
    Sci Rep; 2024 May; 14(1):12355. PubMed ID: 38811747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data.
    de Matos Simoes R; Dalleau S; Williamson KE; Emmert-Streib F
    BMC Syst Biol; 2015 May; 9():21. PubMed ID: 25971253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A generalized framework for controlling FDR in gene regulatory network inference.
    Morgan D; Tjärnberg A; Nordling TEM; Sonnhammer ELL
    Bioinformatics; 2019 Mar; 35(6):1026-1032. PubMed ID: 30169550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.
    Zheng G; Xu Y; Zhang X; Liu ZP; Wang Z; Chen L; Zhu XG
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):535. PubMed ID: 28155637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regularized estimation of large-scale gene association networks using graphical Gaussian models.
    Krämer N; Schäfer J; Boulesteix AL
    BMC Bioinformatics; 2009 Nov; 10():384. PubMed ID: 19930695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Design of experiment for nonlinear dynamic gene regulatory network identification.
    Lu T
    J Biopharm Stat; 2018; 28(3):402-412. PubMed ID: 28375811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fusing gene expressions and transitive protein-protein interactions for inference of gene regulatory networks.
    Liu W; Rajapakse JC
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):37. PubMed ID: 30953534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anomaly detection in gene expression via stochastic models of gene regulatory networks.
    Kim H; Gelenbe E
    BMC Genomics; 2009 Dec; 10 Suppl 3(Suppl 3):S26. PubMed ID: 19958490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of probabilistic Boolean network and dynamic Bayesian network approaches for inferring gene regulatory networks.
    Li P; Zhang C; Perkins EJ; Gong P; Deng Y
    BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S13. PubMed ID: 18047712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Employing decomposable partially observable Markov decision processes to control gene regulatory networks.
    Erdogdu U; Polat F; Alhajj R
    Artif Intell Med; 2017 Nov; 83():14-34. PubMed ID: 28733120
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable Gene Regulatory Network Modeling From Steady-State Data.
    Larvie JE; Sefidmazgi MG; Homaifar A; Harrison SH; Karimoddini A; Guiseppi-Elie A
    Bioengineering (Basel); 2016 Apr; 3(2):. PubMed ID: 28952574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extreme learning machines for reverse engineering of gene regulatory networks from expression time series.
    Rubiolo M; Milone DH; Stegmayer G
    Bioinformatics; 2018 Apr; 34(7):1253-1260. PubMed ID: 29182723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inference of gene regulatory subnetworks from time course gene expression data.
    Liang XJ; Xia Z; Zhang LW; Wu FX
    BMC Bioinformatics; 2012 Jun; 13 Suppl 9(Suppl 9):S3. PubMed ID: 22901088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification-Based Inference of Dynamical Models of Gene Regulatory Networks.
    Fehr DA; Handzlik JE; Manu ; Loh YL
    G3 (Bethesda); 2019 Dec; 9(12):4183-4195. PubMed ID: 31624138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research.
    Iglesias-Martinez LF; Kolch W; Santra T
    Sci Rep; 2016 Nov; 6():37140. PubMed ID: 27876826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.