BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 22373033)

  • 1. Comparison of the Ziemer FEMTO LDV femtosecond laser and Moria M2 mechanical microkeratome.
    Zhou Y; Zhang J; Tian L; Zhai C
    J Refract Surg; 2012 Mar; 28(3):189-94. PubMed ID: 22373033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of corneal flap morphology using AS-OCT in LASIK with the WaveLight FS200 femtosecond laser versus a mechanical microkeratome.
    Zhang Y; Chen YG; Xia YJ
    J Refract Surg; 2013 May; 29(5):320-4. PubMed ID: 23659230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography.
    von Jagow B; Kohnen T
    J Cataract Refract Surg; 2009 Jan; 35(1):35-41. PubMed ID: 19101422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of 2 femtosecond lasers for laser in situ keratomileusis flap creation.
    Zhang J; Zhou Y; Zhai C; Tian L
    J Cataract Refract Surg; 2013 Jun; 39(6):922-7. PubMed ID: 23688879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the flaps made by femtosecond laser and automated keratomes for sub-bowman keratomileusis.
    Zhai CB; Tian L; Zhou YH; Zhang QW; Zhang J
    Chin Med J (Engl); 2013 Jul; 126(13):2440-4. PubMed ID: 23823815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of intraoperative subtraction pachymetry and postoperative anterior segment optical coherence tomography of laser in situ keratomileusis flaps.
    Murakami Y; Manche EE
    J Cataract Refract Surg; 2011 Oct; 37(10):1879-83. PubMed ID: 21840682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of laser in situ keratomileusis flaps created by 2 femtosecond lasers.
    Zheng Y; Zhou Y; Zhang J; Liu Q; Zhai C; Wang Y
    Cornea; 2015 Mar; 34(3):328-33. PubMed ID: 25603229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thin flap laser in situ keratomileusis: flap dimensions with the Moria LSK-One manual microkeratome using the 100-microm head.
    Duffey RJ
    J Cataract Refract Surg; 2005 Jun; 31(6):1159-62. PubMed ID: 16039490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Laser In Situ Keratomileusis Flap Morphology and Predictability by WaveLight FS200 Femtosecond Laser and Moria Microkeratome: An Anterior Segment Optical Coherence Tomography Study.
    Eldaly ZH; Abdelsalam MA; Hussein MS; Nassr MA
    Korean J Ophthalmol; 2019 Apr; 33(2):113-121. PubMed ID: 30977320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of corneal curvature change after mechanical laser in situ keratomileusis flap creation and femtosecond laser flap creation.
    Ortiz D; Alió JL; Piñero D
    J Cataract Refract Surg; 2008 Feb; 34(2):238-42. PubMed ID: 18242446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal flap thickness and topography changes induced by flap creation during laser in situ keratomileusis.
    Güell JL; Velasco F; Roberts C; Sisquella MT; Mahmoud A
    J Cataract Refract Surg; 2005 Jan; 31(1):115-9. PubMed ID: 15721703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond laser versus mechanical microkeratomes for flap creation in laser in situ keratomileusis and effect of postoperative measurement interval on estimated femtosecond flap thickness.
    Rosa AM; Neto Murta J; Quadrado MJ; Tavares C; Lobo C; Van Velze R; Castanheira-Dinis A
    J Cataract Refract Surg; 2009 May; 35(5):833-8. PubMed ID: 19393881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anterior segment optical coherence tomography measurement of flap thickness after myopic LASIK using the Moria one use-plus microkeratome.
    Chen HJ; Xia YJ; Zhong YY; Song XL; Chen YG
    J Refract Surg; 2010 Jun; 26(6):403-10. PubMed ID: 20677727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of LASIK flap thickness and morphology between the Intralase 60- and 150-kHz femtosecond lasers.
    Yu CQ; Manche EE
    J Refract Surg; 2014 Dec; 30(12):827-30. PubMed ID: 25437481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-assisted in situ keratomileusis flap creation with the three-dimensional, transportable Ziemer FEMTO LDV model Z6 I femtosecond laser.
    Pietilä J; Huhtala A; Mäkinen P; Salmenhaara K; Uusitalo H
    Acta Ophthalmol; 2014 Nov; 92(7):650-5. PubMed ID: 24373615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flap thickness accuracy: comparison of 6 microkeratome models.
    Solomon KD; Donnenfeld E; Sandoval HP; Al Sarraf O; Kasper TJ; Holzer MP; Slate EH; Vroman DT;
    J Cataract Refract Surg; 2004 May; 30(5):964-77. PubMed ID: 15130631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictability of corneal flap thickness in laser in situ keratomileusis using a 200 kHz femtosecond laser.
    Cummings AB; Cummings BK; Kelly GE
    J Cataract Refract Surg; 2013 Mar; 39(3):378-85. PubMed ID: 23352500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond laser versus mechanical microkeratome for LASIK: a randomized controlled study.
    Patel SV; Maguire LJ; McLaren JW; Hodge DO; Bourne WM
    Ophthalmology; 2007 Aug; 114(8):1482-90. PubMed ID: 17350688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corneal flap thickness in laser in situ keratomileusis using the Moria M2 microkeratome.
    Muallem MS; Yoo SY; Romano AC; Schiffman JC; Culbertson WW
    J Cataract Refract Surg; 2004 Sep; 30(9):1902-8. PubMed ID: 15342053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative micromorphologic in vitro porcine study of IntraLase and Femto LDV femtosecond lasers.
    Kermani O; Oberheide U
    J Cataract Refract Surg; 2008 Aug; 34(8):1393-9. PubMed ID: 18655994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.