These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 22373491)

  • 1. Regularized regression method for genome-wide association studies.
    Liu J; Wang K; Ma S; Huang J
    BMC Proc; 2011 Nov; 5 Suppl 9(Suppl 9):S67. PubMed ID: 22373491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accounting for linkage disequilibrium in genome-wide association studies: A penalized regression method.
    Liu J; Wang K; Ma S; Huang J
    Stat Interface; 2013 Jan; 6(1):99-115. PubMed ID: 25258655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penalized-regression-based multimarker genotype analysis of Genetic Analysis Workshop 17 data.
    Ayers KL; Mamasoula C; Cordell HJ
    BMC Proc; 2011 Nov; 5 Suppl 9(Suppl 9):S92. PubMed ID: 22373158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the lasso and the elastic net in genome-wide association studies.
    Waldmann P; Mészáros G; Gredler B; Fuerst C; Sölkner J
    Front Genet; 2013; 4():270. PubMed ID: 24363662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies.
    D'Angelo GM; Rao D; Gu CC
    BMC Proc; 2009 Dec; 3 Suppl 7(Suppl 7):S62. PubMed ID: 20018056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cross-validated AUC for MCP-logistic regression with high-dimensional data.
    Jiang D; Huang J; Zhang Y
    Stat Methods Med Res; 2013 Oct; 22(5):505-18. PubMed ID: 22127580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association studies using a penalized moving-window regression.
    Bao M; Wang K
    Bioinformatics; 2017 Dec; 33(24):3887-3894. PubMed ID: 28961706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three statistical approaches for feature selection for fine-scale genetic population assignment in four pig breeds.
    Hayah I; Ababou M; Botti S; Badaoui B
    Trop Anim Health Prod; 2021 Jul; 53(3):395. PubMed ID: 34245361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide association analysis by lasso penalized logistic regression.
    Wu TT; Chen YF; Hastie T; Sobel E; Lange K
    Bioinformatics; 2009 Mar; 25(6):714-21. PubMed ID: 19176549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Sparse Laplacian Shrinkage Estimator for High-Dimensional Regression.
    Huang J; Ma S; Li H; Zhang CH
    Ann Stat; 2011; 39(4):2021-2046. PubMed ID: 22102764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a LASSO regression approach on the unrelated samples of Genetic Analysis Workshop 17.
    Guo W; Elston RC; Zhu X
    BMC Proc; 2011 Nov; 5 Suppl 9(Suppl 9):S12. PubMed ID: 22373385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative hard thresholding for model selection in genome-wide association studies.
    Keys KL; Chen GK; Lange K
    Genet Epidemiol; 2017 Dec; 41(8):756-768. PubMed ID: 28875524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Newton-Raphson Meets Sparsity: Sparse Learning Via a Novel Penalty and a Fast Solver.
    Cao Y; Kang L; Li X; Liu Y; Luo Y; Shi Y
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12057-12067. PubMed ID: 37028319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Majorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models.
    Jiang D; Huang J
    Stat Comput; 2014 Sep; 24(5):871-883. PubMed ID: 25309048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing penalty functions in high dimensional problems: The role of tuning parameters.
    Chen TH; Sun W; Fine JP
    Electron J Stat; 2016; 10(2):2312-2328. PubMed ID: 28989558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model selection based on logistic regression in a highly correlated candidate gene region.
    Uh HW; Mertens BJ; Jan van der Wijk H; Putter H; van Houwelingen HC; Houwing-Duistermaat JJ
    BMC Proc; 2007; 1 Suppl 1(Suppl 1):S114. PubMed ID: 18466455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimism Bias Correction in Omics Studies with Big Data: Assessment of Penalized Methods on Simulated Data.
    Zhao Y; Dantony E; Roy P
    OMICS; 2019 Apr; 23(4):207-213. PubMed ID: 30794050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporating group correlations in genome-wide association studies using smoothed group Lasso.
    Liu J; Huang J; Ma S; Wang K
    Biostatistics; 2013 Apr; 14(2):205-19. PubMed ID: 22988281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical issues in screening and variable selection in genome-wide association analysis.
    Hong S; Kim Y; Park T
    Cancer Inform; 2014; 13(Suppl 7):55-65. PubMed ID: 25635166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting single-nucleotide polymorphism by single-nucleotide polymorphism interactions in rheumatoid arthritis using a two-step approach with machine learning and a Bayesian threshold least absolute shrinkage and selection operator (LASSO) model.
    González-Recio O; de Maturana EL; Vega AT; Engelman CD; Broman KW
    BMC Proc; 2009 Dec; 3 Suppl 7(Suppl 7):S63. PubMed ID: 20018057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.