BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 22373736)

  • 1. Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants.
    Oukarroum A; Strasser RJ; Schansker G
    Photosynth Res; 2012 Mar; 111(3):303-14. PubMed ID: 22373736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does Parmelina tiliacea lichen photosystem II survive at liquid nitrogen temperatures?
    Oukarroum A; El Gharous M; Strasser RJ
    Cryobiology; 2017 Feb; 74():160-162. PubMed ID: 27988167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic performance of Antarctic lichen Dermatocarpon polyphyllizum when affected by desiccation and low temperatures.
    Bednaříková M; Váczi P; Lazár D; Barták M
    Photosynth Res; 2020 Aug; 145(2):159-177. PubMed ID: 32720111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of photosystem I and II activities during re-hydration of lichen Hypogymnia physodes thalli.
    Bukhov NG; Govindachary S; Egorova EA; Carpentier R
    Planta; 2004 May; 219(1):110-20. PubMed ID: 14747947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent electron transport rate - a non-invasive proxy of photosynthetic CO
    Solhaug KA; Asplund J; Gauslaa Y
    Planta; 2021 Jan; 253(1):14. PubMed ID: 33392847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoprotection of reaction centres in photosynthetic organisms: mechanisms of thermal energy dissipation in desiccated thalli of the lichen Lobaria pulmonaria.
    Heber U; Bilger W; Türk R; Lange OL
    New Phytol; 2010 Jan; 185(2):459-70. PubMed ID: 19863730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated air temperature damage to photosynthetic apparatus alleviated by enhanced cyclic electron flow around photosystem I in tobacco leaves.
    Yanhui C; Hongrui W; Beining Z; Shixing G; Zihan W; Yue W; Huihui Z; Guangyu S
    Ecotoxicol Environ Saf; 2020 Nov; 204():111136. PubMed ID: 32798755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa.
    Lu C; Qiu N; Wang B; Zhang J
    J Exp Bot; 2003 Feb; 54(383):851-60. PubMed ID: 12554728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress.
    Essemine J; Govindachary S; Ammar S; Bouzid S; Carpentier R
    Plant Physiol Biochem; 2011 Mar; 49(3):235-43. PubMed ID: 21256041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat sensitivity of photosynthetic electron transport varies during the day due to changes in sugars and osmotic potential.
    Hüve K; Bichele I; Tobias M; Niinemets U
    Plant Cell Environ; 2006 Feb; 29(2):212-28. PubMed ID: 17080637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parietin, a photoprotective secondary product of the lichen Xanthoria parietina.
    Solhaug KA; Gauslaa Y
    Oecologia; 1996 Nov; 108(3):412-418. PubMed ID: 28307855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthesis measurements on the upper and lower side of the thallus of the foliose lichen Nephroma arcticum (L.) Torss.
    Chekanov K; Lobakova E
    Photosynth Res; 2021 Sep; 149(3):289-301. PubMed ID: 34215958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Primary Photosynthesis in Desiccating Antarctic Lichens Differing in Their Photobionts, Thallus Morphology, and Spectral Properties.
    Barták M; Hájek J; Orekhova A; Villagra J; Marín C; Palfner G; Casanova-Katny A
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33924436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of photosynthetic processes to freezing temperature in extremophilic lichens evaluated by linear cooling and chlorophyll fluorescence.
    Hájek J; Barták M; Hazdrová J; Forbelská M
    Cryobiology; 2016 Dec; 73(3):329-334. PubMed ID: 27729220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Old-growth forest versus generalist lichens: Sensitivity to prolonged desiccation stress and photosynthesis reactivation rate upon rehydration.
    Osyczka P; Kościelniak R; Stanek M
    Mycologia; 2024; 116(1):31-43. PubMed ID: 38039398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of thallus melanisation on the sensitivity of lichens to heat stress.
    Chowaniec K; Latkowska E; Skubała K
    Sci Rep; 2023 Mar; 13(1):5083. PubMed ID: 36977766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of cyclic electron flow around photosystem I during heat stress in grape leaves.
    Sun Y; Geng Q; Du Y; Yang X; Zhai H
    Plant Sci; 2017 Mar; 256():65-71. PubMed ID: 28167040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple dissipation components of excess light energy in dry lichen revealed by ultrafast fluorescence study at 5 K.
    Miyake H; Komura M; Itoh S; Kosugi M; Kashino Y; Satoh K; Shibata Y
    Photosynth Res; 2011 Oct; 110(1):39-48. PubMed ID: 21986932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do the expected heatwaves pose a threat to lichens?: Linkage between a passive decline in water content in thalli and response to heat stress.
    Osyczka P; Myśliwa-Kurdziel B
    Plant Cell Environ; 2024 Jun; ():. PubMed ID: 38874284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phototolerance of lichens, mosses and higher plants in an alpine environment: analysis of photoreactions.
    Heber U; Bilger W; Bligny R; Lange OL
    Planta; 2000 Nov; 211(6):770-80. PubMed ID: 11144261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.