These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
262 related articles for article (PubMed ID: 22373937)
1. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation. Bellmann M; Schmalz T; Ludwigs E; Blumentritt S Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937 [TBL] [Abstract][Full Text] [Related]
2. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees. Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685 [TBL] [Abstract][Full Text] [Related]
3. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps. Lura DJ; Wernke MM; Carey SL; Kahle JT; Miro RM; Highsmith MJ Clin Biomech (Bristol); 2015 Feb; 30(2):175-81. PubMed ID: 25537443 [TBL] [Abstract][Full Text] [Related]
4. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints. Bellmann M; Schmalz T; Blumentritt S Arch Phys Med Rehabil; 2010 Apr; 91(4):644-52. PubMed ID: 20382300 [TBL] [Abstract][Full Text] [Related]
5. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259 [TBL] [Abstract][Full Text] [Related]
6. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114 [TBL] [Abstract][Full Text] [Related]
7. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review. Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023 [TBL] [Abstract][Full Text] [Related]
8. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control. Lura DJ; Wernke MW; Carey SL; Kahle JT; Miro RM; Highsmith MJ Gait Posture; 2017 Oct; 58():103-107. PubMed ID: 28763712 [TBL] [Abstract][Full Text] [Related]
9. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees. Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984 [TBL] [Abstract][Full Text] [Related]
10. A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters. Schmalz T; Pröbsting E; Auberger R; Siewert G Prosthet Orthot Int; 2016 Apr; 40(2):277-86. PubMed ID: 25249381 [TBL] [Abstract][Full Text] [Related]
11. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint]. Stinus H Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622 [TBL] [Abstract][Full Text] [Related]
12. Preliminary evaluation of an automatically stance-phase controlled pediatric prosthetic knee joint using quantitative gait analysis. Andrysek J; Redekop S; Naumann S Arch Phys Med Rehabil; 2007 Apr; 88(4):464-70. PubMed ID: 17398247 [TBL] [Abstract][Full Text] [Related]
13. Mobility function of a prosthetic knee joint with an automatic stance phase lock. Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198 [TBL] [Abstract][Full Text] [Related]
14. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
15. Stair ascent with an innovative microprocessor-controlled exoprosthetic knee joint. Bellmann M; Schmalz T; Ludwigs E; Blumentritt S Biomed Tech (Berl); 2012 Dec; 57(6):435-44. PubMed ID: 23241569 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee. Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519 [TBL] [Abstract][Full Text] [Related]
17. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
18. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees. Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182 [TBL] [Abstract][Full Text] [Related]
19. Biomechanical analysis of stair ambulation in lower limb amputees. Schmalz T; Blumentritt S; Marx B Gait Posture; 2007 Feb; 25(2):267-78. PubMed ID: 16725325 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Fuenzalida Squella SA; Kannenberg A; Brandão Benetti  Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]