These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 22374152)

  • 1. Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor.
    Yang Z; Zhang S; Liu L; Li X; Chen H; Yang H; Wang X
    Bioresour Technol; 2012 Apr; 110():595-602. PubMed ID: 22374152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: a comparative study.
    Kuprianov VI; Arromdee P
    Bioresour Technol; 2013 Jul; 140():199-210. PubMed ID: 23693147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal.
    Li XG; Lv Y; Ma BG; Jian SW; Tan HB
    Bioresour Technol; 2011 Oct; 102(20):9783-7. PubMed ID: 21865028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses.
    Zhang K; Zhang K; Cao Y; Pan WP
    Bioresour Technol; 2013 Mar; 131():325-32. PubMed ID: 23370215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Combustion characteristics of mixed municipal solid waste in thermogravimetric analysis and lab scale fluidized bed].
    Jiang F; Pan Z; Liu S; Wang H
    Huan Jing Ke Xue; 2002 Jan; 23(1):114-8. PubMed ID: 11987394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combustion and NO emission of high nitrogen content biomass in a pilot-scale vortexing fluidized bed combustor.
    Qian FP; Chyang CS; Huang KS; Tso J
    Bioresour Technol; 2011 Jan; 102(2):1892-8. PubMed ID: 20800476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.
    Shin D; Jang S; Hwang J
    Waste Manag; 2005; 25(7):680-5. PubMed ID: 16009301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on fluidized bed combustion characteristics of corncob in three different combustion modes.
    Chyang CS; Duan F; Lin SM; Tso J
    Bioresour Technol; 2012 Jul; 116():184-9. PubMed ID: 22609674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of the particle size of alumina sand on the combustion and emission behavior of cedar pellets in a fluidized bed combustor.
    Han J; Kim H; Minami W; Shimizu T; Wang G
    Bioresour Technol; 2008 Jun; 99(9):3782-6. PubMed ID: 17869096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollutant emissions released during sewage sludge combustion in a bubbling fluidized bed reactor.
    Soria-Verdugo A; Kauppinen J; Soini T; García-Gutiérrez LM; Pikkarainen T
    Waste Manag; 2020 Mar; 105():27-38. PubMed ID: 32018140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.
    Lahijani P; Zainal ZA
    Bioresour Technol; 2011 Jan; 102(2):2068-76. PubMed ID: 20980143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ignition and burning rates of segregated waste combustion in packed beds.
    Ryu C; Phan AN; Yang YB; Sharifi VN; Swithenbank J
    Waste Manag; 2007; 27(6):802-10. PubMed ID: 16790338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-firing of eucalyptus bark and rubberwood sawdust in a swirling fluidized-bed combustor using an axial flow swirler.
    Chakritthakul S; Kuprianov VI
    Bioresour Technol; 2011 Sep; 102(17):8268-78. PubMed ID: 21729824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combustion characteristics of different parts of corn straw and NO formation in a fixed bed.
    Zhao W; Li Z; Wang D; Zhu Q; Sun R; Meng B; Zhao G
    Bioresour Technol; 2008 May; 99(8):2956-63. PubMed ID: 17706422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermogravimetric investigation of hydrochar-lignite co-combustion.
    Liu Z; Quek A; Kent Hoekman S; Srinivasan MP; Balasubramanian R
    Bioresour Technol; 2012 Nov; 123():646-52. PubMed ID: 22960124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pilot-plant study for destruction of PCBs in contaminated soils using fluidized bed combustion technology.
    Desai DL; Anthony EJ; Wang J
    J Environ Manage; 2007 Aug; 84(3):299-304. PubMed ID: 16901621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-combustion performance of poultry wastes and natural gas in the advanced Swirling Fluidized Bed Combustor (SFBC).
    Zhu S; Lee SW
    Waste Manag; 2005; 25(5):511-8. PubMed ID: 15925760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis.
    Sait HH; Hussain A; Salema AA; Ani FN
    Bioresour Technol; 2012 Aug; 118():382-9. PubMed ID: 22705960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of bed material size distribution, operating conditions and agglomeration phenomenon on heavy metal emission in fluidized bed combustion process.
    Liu ZS; Peng TH; Lin CL
    Waste Manag; 2012 Mar; 32(3):417-25. PubMed ID: 22119049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of secondary gas injection on the peanut shell combustion and its pollutant emissions in a vortexing fluidized bed combustor.
    Duan F; Chyang CS; Wang YJ; Tso J
    Bioresour Technol; 2014 Feb; 154():201-8. PubMed ID: 24393745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.