These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22374344)

  • 1. Neural network incorporating meal information improves accuracy of short-time prediction of glucose concentration.
    Zecchin C; Facchinetti A; Sparacino G; De Nicolao G; Cobelli C
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1550-60. PubMed ID: 22374344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring.
    Pérez-Gandía C; Facchinetti A; Sparacino G; Cobelli C; Gómez EJ; Rigla M; de Leiva A; Hernando ME
    Diabetes Technol Ther; 2010 Jan; 12(1):81-8. PubMed ID: 20082589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new neural network approach for short-term glucose prediction using continuous glucose monitoring time-series and meal information.
    Zecchin C; Facchinetti A; Sparacino G; De Nicolao G; Cobelli C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5653-6. PubMed ID: 22255622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jump neural network for real-time prediction of glucose concentration.
    Zecchin C; Facchinetti A; Sparacino G; Cobelli C
    Methods Mol Biol; 2015; 1260():245-59. PubMed ID: 25502386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jump neural network for online short-time prediction of blood glucose from continuous monitoring sensors and meal information.
    Zecchin C; Facchinetti A; Sparacino G; Cobelli C
    Comput Methods Programs Biomed; 2014; 113(1):144-52. PubMed ID: 24192453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the accuracy of subcutaneous glucose sensors: a real-time deconvolution-based approach.
    Guerra S; Facchinetti A; Sparacino G; Nicolao GD; Cobelli C
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1658-69. PubMed ID: 22481799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Much Is Short-Term Glucose Prediction in Type 1 Diabetes Improved by Adding Insulin Delivery and Meal Content Information to CGM Data? A Proof-of-Concept Study.
    Zecchin C; Facchinetti A; Sparacino G; Cobelli C
    J Diabetes Sci Technol; 2016 Sep; 10(5):1149-60. PubMed ID: 27381030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic risk measure from continuous glucose monitoring data.
    Guerra S; Sparacino G; Facchinetti A; Schiavon M; Man CD; Cobelli C
    Diabetes Technol Ther; 2011 Aug; 13(8):843-52. PubMed ID: 21561370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series.
    Sparacino G; Zanderigo F; Corazza S; Maran A; Facchinetti A; Cobelli C
    IEEE Trans Biomed Eng; 2007 May; 54(5):931-7. PubMed ID: 17518291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiple local models approach to accuracy improvement in continuous glucose monitoring.
    Barceló-Rico F; Bondia J; Díez JL; Rossetti P
    Diabetes Technol Ther; 2012 Jan; 14(1):74-82. PubMed ID: 21864018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the glucose sensor error.
    Facchinetti A; Del Favero S; Sparacino G; Castle JR; Ward WK; Cobelli C
    IEEE Trans Biomed Eng; 2014 Mar; 61(3):620-9. PubMed ID: 24108706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diabetes technology and treatments in the paediatric age group.
    Shalitin S; Peter Chase H
    Int J Clin Pract Suppl; 2011 Feb; (170):76-82. PubMed ID: 21323816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of a meal using continuous glucose monitoring: implications for an artificial beta-cell.
    Dassau E; Bequette BW; Buckingham BA; Doyle FJ
    Diabetes Care; 2008 Feb; 31(2):295-300. PubMed ID: 17977934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical methods for the retrieval and interpretation of continuous glucose monitoring data in diabetes.
    Kovatchev B; Breton M; Clarke W
    Methods Enzymol; 2009; 454():69-86. PubMed ID: 19216923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online prediction of onsets of seizure-like events in hippocampal neural networks using wavelet artificial neural networks.
    Chiu AW; Kang EE; Derchansky M; Carlen PL; Bardakjian BL
    Ann Biomed Eng; 2006 Feb; 34(2):282-94. PubMed ID: 16450192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combination of rough-based feature selection and RBF neural network for classification using gene expression data.
    Chiang JH; Ho SH
    IEEE Trans Nanobioscience; 2008 Mar; 7(1):91-9. PubMed ID: 18334459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An insulin infusion advisory system based on autotuning nonlinear model-predictive control.
    Zarkogianni K; Vazeou A; Mougiakakou SG; Prountzou A; Nikita KS
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2467-77. PubMed ID: 21622071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preventing exercise-induced hypoglycemia in type 1 diabetes using real-time continuous glucose monitoring and a new carbohydrate intake algorithm: an observational field study.
    Riddell MC; Milliken J
    Diabetes Technol Ther; 2011 Aug; 13(8):819-25. PubMed ID: 21599515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of a glucose appearance function from foods using deconvolution.
    Yates TL; Fletcher LR
    IMA J Math Appl Med Biol; 2000 Jun; 17(2):169-84. PubMed ID: 10994512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of blood glucose predictors: the prediction-error grid analysis.
    Sivananthan S; Naumova V; Man CD; Facchinetti A; Renard E; Cobelli C; Pereverzyev SV
    Diabetes Technol Ther; 2011 Aug; 13(8):787-96. PubMed ID: 21612393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.