These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
412 related articles for article (PubMed ID: 22374752)
1. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid. Azami M; Moosavifar MJ; Baheiraei N; Moztarzadeh F; Ai J J Biomed Mater Res A; 2012 May; 100(5):1347-55. PubMed ID: 22374752 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Jamalpoor Z; Mirzadeh H; Joghataei MT; Zeini D; Bagheri-Khoulenjani S; Nourani MR J Biomed Mater Res A; 2015 May; 103(5):1882-92. PubMed ID: 25195588 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic composite scaffolds based mineralization of hydroxyapatite on electrospun calcium-containing poly(vinyl alcohol) nanofibers. Chang W; Mu X; Zhu X; Ma G; Li C; Xu F; Nie J Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4369-76. PubMed ID: 23910355 [TBL] [Abstract][Full Text] [Related]
5. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
6. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Li X; Xie J; Yuan X; Xia Y Langmuir; 2008 Dec; 24(24):14145-50. PubMed ID: 19053657 [TBL] [Abstract][Full Text] [Related]
7. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Kim HW; Kim HE; Salih V Biomaterials; 2005 Sep; 26(25):5221-30. PubMed ID: 15792549 [TBL] [Abstract][Full Text] [Related]
8. Porous scaffold of gelatin-starch with nanohydroxyapatite composite processed via novel microwave vacuum drying. Sundaram J; Durance TD; Wang R Acta Biomater; 2008 Jul; 4(4):932-42. PubMed ID: 18325862 [TBL] [Abstract][Full Text] [Related]
9. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]
10. Biomimetic composite scaffold of hydroxyapatite/gelatin-chitosan core-shell nanofibers for bone tissue engineering. Chen P; Liu L; Pan J; Mei J; Li C; Zheng Y Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():325-335. PubMed ID: 30678918 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic bone-like composites fabricated through an automated alternate soaking process. Strange DG; Oyen ML Acta Biomater; 2011 Oct; 7(10):3586-94. PubMed ID: 21723962 [TBL] [Abstract][Full Text] [Related]
12. Electrospun gelatin/poly(ε-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering. Rajzer I; Menaszek E; Kwiatkowski R; Planell JA; Castano O Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():183-90. PubMed ID: 25280695 [TBL] [Abstract][Full Text] [Related]
13. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. Zandi M; Mirzadeh H; Mayer C; Urch H; Eslaminejad MB; Bagheri F; Mivehchi H J Biomed Mater Res A; 2010 Mar; 92(4):1244-55. PubMed ID: 19322878 [TBL] [Abstract][Full Text] [Related]
14. Development of porous chitosan-gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. Isikli C; Hasirci V; Hasirci N J Tissue Eng Regen Med; 2012 Feb; 6(2):135-43. PubMed ID: 21351375 [TBL] [Abstract][Full Text] [Related]
15. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Saber-Samandari S; Saber-Samandari S; Kiyazar S; Aghazadeh J; Sadeghi A Int J Biol Macromol; 2016 May; 86():434-42. PubMed ID: 26836617 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of a laminated hydroxyapatite/gelatin nanocomposite scaffold with controlled pore structure for bone tissue engineering. Azami M; Samadikuchaksaraei A; Poursamar SA Int J Artif Organs; 2010 Feb; 33(2):86-95. PubMed ID: 20306435 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Kavya KC; Jayakumar R; Nair S; Chennazhi KP Int J Biol Macromol; 2013 Aug; 59():255-63. PubMed ID: 23591473 [TBL] [Abstract][Full Text] [Related]
18. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
19. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Madhumathi K; Sudheesh Kumar PT; Kavya KC; Furuike T; Tamura H; Nair SV; Jayakumar R Int J Biol Macromol; 2009 Oct; 45(3):289-92. PubMed ID: 19549539 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]