These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 22374864)

  • 21. Modular multiple sensors information management for computer-integrated surgery.
    Vaccarella A; Enquobahrie A; Ferrigno G; Momi ED
    Int J Med Robot; 2012 Sep; 8(3):253-60. PubMed ID: 22407822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions.
    Nijkamp J; Schermers B; Schmitz S; de Jonge S; Kuhlmann K; van der Heijden F; Sonke JJ; Ruers T
    Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1487-98. PubMed ID: 26811081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of a computer navigation system and a CT method for determination of the orientation of implanted acetabular cup in total hip arthroplasty: a cadaver study.
    Lin F; Lim D; Wixson RL; Milos S; Hendrix RW; Makhsous M
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):1004-11. PubMed ID: 18541352
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reliability of navigated lower limb alignment in high tibial osteotomies.
    Goleski P; Warkentine B; Lo D; Gyuricza C; Kendoff D; Pearle AD
    Am J Sports Med; 2008 Nov; 36(11):2179-86. PubMed ID: 18593844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [LED autoregistration in navigated endonasal sinus surgery].
    Arapakis I; Hubbe U; Maier W; Laszig R; Schipper J
    Laryngorhinootologie; 2005 Jun; 84(6):418-25. PubMed ID: 15940573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of cutaneous and transosseous electromagnetic position sensors in the assessment of tibial rotation in a cadaveric model.
    Magit DP; McGarry M; Tibone JE; Lee TQ
    Am J Sports Med; 2008 May; 36(5):971-7. PubMed ID: 18272792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of accuracy of acetabular cup orientation in CT-free navigated total hip arthroplasty.
    Fukunishi S; Fukui T; Imamura F; Nishio S
    Orthopedics; 2008 Oct; 31(10):. PubMed ID: 19226017
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time tracking of vertebral body movement with implantable reference microsensors.
    Mularski S; Picht T; Kuehn B; Kombos T; Brock M; Suess O
    Comput Aided Surg; 2006 May; 11(3):137-46. PubMed ID: 16829507
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preliminary experience with electromagnetic navigation system in TKA.
    Tigani D; Busacca M; Moio A; Rimondi E; Del Piccolo N; Sabbioni G
    Knee; 2009 Jan; 16(1):33-8. PubMed ID: 18948010
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Treatment of limb deformities by the Ilizarov method].
    Damsin JP; Carlioz H
    Rev Chir Orthop Reparatrice Appar Mot; 1994; 80(4):324-33. PubMed ID: 7740134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Registration using three-dimensional laser surface scanning for navigation in oral and craniomaxillofacial surgery].
    Troitzsch D; Hoffmann J; Dammann F; Bartz D; Reinert S
    Zentralbl Chir; 2003 Jul; 128(7):551-6. PubMed ID: 12884140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of a new navigated parallel drill guide for femoral neck fractures.
    Kendoff D; Hüfner T; Citak M; Geerling J; Maier C; Wesemeier F; Krettek C
    Comput Aided Surg; 2006 Nov; 11(6):317-21. PubMed ID: 17458766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Imageless navigation system does not improve component rotational alignment in total knee arthroplasty.
    Cheng T; Zhang G; Zhang X
    J Surg Res; 2011 Dec; 171(2):590-600. PubMed ID: 21176919
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computer-assisted single- or double-cut oblique osteotomies for the correction of lower limb deformities.
    Belei P; Schkommodau E; Frenkel A; Mumme T; Radermacher K
    Proc Inst Mech Eng H; 2007 Oct; 221(7):787-800. PubMed ID: 18019465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A software solution to dynamically reduce metallic distortions of electromagnetic tracking systems for image-guided surgery.
    Li M; Hansen C; Rose G
    Int J Comput Assist Radiol Surg; 2017 Sep; 12(9):1621-1633. PubMed ID: 28258402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimisation and evaluation of an electromagnetic tracking device for high-accuracy three-dimensional ultrasound imaging of the carotid arteries.
    Barratt DC; Davies AH; Hughes AD; Thom SA; Humphries KN
    Ultrasound Med Biol; 2001 Jul; 27(7):957-68. PubMed ID: 11476930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Planar Body-Mounted Sensors for Electromagnetic Tracking.
    Cavaliere M; Jaeger HA; O'Donoghue K; Cantillon-Murphy P
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [New generation aurora electromagnetic tracking system in the medical surgical navigation].
    Luo W; Zhang Q; Li S; Wei X
    Zhongguo Yi Liao Qi Xie Za Zhi; 2013 Mar; 37(2):126-8. PubMed ID: 23777070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New Technologies in Pediatric Deformity Correction.
    Iobst CA
    Orthop Clin North Am; 2019 Jan; 50(1):77-85. PubMed ID: 30477708
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The introduction of navigation in liver surgery in Brazil.
    Correia MM; Jesus JP; Feitosa R; Oliveira DA
    Rev Col Bras Cir; 2014; 41(6):451-4. PubMed ID: 25742413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.