These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22375035)

  • 21. A thermally conductive Martian core and implications for its dynamo cessation.
    Hsieh WP; Deschamps F; Tsao YC; Yoshino T; Lin JF
    Sci Adv; 2024 Mar; 10(12):eadk1087. PubMed ID: 38507495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-pressure melting experiments of Fe
    Thompson S; Sugimura-Komabayashi E; Komabayashi T; McGuire C; Breton H; Suehiro S; Ohishi Y
    J Phys Condens Matter; 2022 Jul; 34(39):. PubMed ID: 35853447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary.
    Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S
    Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ab initio simulation of the Earth's core.
    Alfè D; Gillan MJ; Vocadlo L; Brodholt J; Price GD
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1227-44. PubMed ID: 12804276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melting of the Earth's inner core.
    Gubbins D; Sreenivasan B; Mound J; Rost S
    Nature; 2011 May; 473(7347):361-3. PubMed ID: 21593868
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Melting phase relations in Fe-Si-H at high pressure and implications for Earth's inner core crystallization.
    Hikosaka K; Tagawa S; Hirose K; Okuda Y; Oka K; Umemoto K; Ohishi Y
    Sci Rep; 2022 Jun; 12(1):10000. PubMed ID: 35705617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo.
    Zhang Y; Hou M; Liu G; Zhang C; Prakapenka VB; Greenberg E; Fei Y; Cohen RE; Lin JF
    Phys Rev Lett; 2020 Aug; 125(7):078501. PubMed ID: 32857557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core.
    Kádas K; Vitos L; Johansson B; Ahuja R
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15560-2. PubMed ID: 19805214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of the geomagnetic axial dipole to thermal core-mantle interactions.
    Bloxham J
    Nature; 2000 May; 405(6782):63-5. PubMed ID: 10811217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity.
    Aubert J; Amit H; Hulot G; Olson P
    Nature; 2008 Aug; 454(7205):758-61. PubMed ID: 18685706
    [TBL] [Abstract][Full Text] [Related]  

  • 31.
    Dekura H; Tsuchiya T
    J Phys Condens Matter; 2023 May; 35(30):. PubMed ID: 37071998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Laboratory Model for Convection in Earth's Core Driven by a Thermally Heterogeneous Mantle.
    Sumita I; Olson P
    Science; 1999 Nov; 286(5444):1547-1549. PubMed ID: 10567258
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constraints on the composition of the Earth's core from ab initio calculations.
    Alfe D; Gillan MJ; Price GD
    Nature; 2000 May; 405(6783):172-5. PubMed ID: 10821270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle.
    Hernlund JW; Thomas C; Tackley PJ
    Nature; 2005 Apr; 434(7035):882-6. PubMed ID: 15829961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An early geodynamo driven by exsolution of mantle components from Earth's core.
    Badro J; Siebert J; Nimmo F
    Nature; 2016 Aug; 536(7616):326-8. PubMed ID: 27437583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase transition of FeO and stratification in Earth's outer core.
    Ozawa H; Takahashi F; Hirose K; Ohishi Y; Hirao N
    Science; 2011 Nov; 334(6057):792-4. PubMed ID: 22076374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical absorption and radiative thermal conductivity of silicate perovskite to 125 gigapascals.
    Keppler H; Dubrovinsky LS; Narygina O; Kantor I
    Science; 2008 Dec; 322(5907):1529-32. PubMed ID: 19056982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging the top of the Earth's inner core: a present-day flow model.
    Tkalčić H; Belonoshko AB; Muir JB; Mattesini M; Moresi L; Waszek L
    Sci Rep; 2024 Apr; 14(1):8999. PubMed ID: 38637675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas.
    Murakami M; Goncharov AF; Hirao N; Masuda R; Mitsui T; Thomas SM; Bina CR
    Nat Commun; 2014 Nov; 5():5428. PubMed ID: 25384573
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrical conductivity of melts: implications for conductivity anomalies in the Earth's mantle.
    Zhang BH; Guo X; Yoshino T; Xia QK
    Natl Sci Rev; 2021 Nov; 8(11):nwab064. PubMed ID: 34876992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.