These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22375153)

  • 1. Influence of Red Blood Cells on Nanoparticle Targeted Delivery in Microcirculation.
    Tan J; Thomas A; Liu Y
    Soft Matter; 2011 Dec; 8():1934-1946. PubMed ID: 22375153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Molecular Communication Detection Method for the Deformability of Erythrocyte Membrane in Blood Vessels.
    Sun Y; Zhang R; Chen Y
    IEEE Trans Nanobioscience; 2021 Oct; 20(4):387-395. PubMed ID: 33684042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Nanoparticle Dispersion in Red Blood Cell Suspension by the Lattice Boltzmann-Immersed Boundary Method.
    Tan J; Keller W; Sohrabi S; Yang J; Liu Y
    Nanomaterials (Basel); 2016 Feb; 6(2):. PubMed ID: 28344287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersion characteristics of blood during nanoparticle assisted drug delivery process through a permeable microvessel.
    Shaw S; Ganguly S; Sibanda P; Chakraborty S
    Microvasc Res; 2014 Mar; 92():25-33. PubMed ID: 24406843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling particle shape-dependent dynamics in nanomedicine.
    Shah S; Liu Y; Hu W; Gao J
    J Nanosci Nanotechnol; 2011 Feb; 11(2):919-28. PubMed ID: 21399713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of nanoparticle delivery in microcirculation using a microfluidic device.
    Thomas A; Tan J; Liu Y
    Microvasc Res; 2014 Jul; 94():17-27. PubMed ID: 24788074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled Particulate and Continuum Model for Nanoparticle Targeted Delivery.
    Tan J; Wang S; Yang J; Liu Y
    Comput Struct; 2013 Jun; 122():128-134. PubMed ID: 23729869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of size, shape and vessel geometry on nanoparticle distribution.
    Tan J; Shah S; Thomas A; Ou-Yang HD; Liu Y
    Microfluid Nanofluidics; 2013 Jan; 14(1-2):77-87. PubMed ID: 23554583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical simulation of transport and adhesion of thermogenic nano-carriers in microvessels.
    Yue K; You Y; Yang C; Niu Y; Zhang X
    Soft Matter; 2020 Dec; 16(45):10345-10357. PubMed ID: 33053003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A numerical study on drug delivery
    Nikfar M; Razizadeh M; Paul R; Muzykantov V; Liu Y
    Nanoscale; 2021 Oct; 13(41):17359-17372. PubMed ID: 34590654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic interactions between red blood cells and drug carriers by image analysis techniques.
    D'Apolito R; Taraballi F; Minardi S; Liu X; Caserta S; Cevenini A; Tasciotti E; Tomaiuolo G; Guido S
    Med Eng Phys; 2016 Jan; 38(1):17-23. PubMed ID: 26651215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN; Saha SC; Sauret E; Flower R; Senadeera W; Gu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):161. PubMed ID: 28155717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels.
    Boutchuen A; Zimmerman D; Arabshahi A; Melnyczuk J; Palchoudhury S
    Beilstein J Nanotechnol; 2020; 11():296-309. PubMed ID: 32117668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation on red blood cell dynamics in microflow: Effect of cell deformability.
    Ju M; Leo HL; Kim S
    Clin Hemorheol Microcirc; 2017; 65(2):105-117. PubMed ID: 27447420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of erythrocytes in leukocyte-endothelial interactions: mathematical model and experimental validation.
    Munn LL; Melder RJ; Jain RK
    Biophys J; 1996 Jul; 71(1):466-78. PubMed ID: 8804629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear-induced gradient diffusivity of a red blood cell suspension: effects of cell dynamics from tumbling to tank-treading.
    Malipeddi AR; Sarkar K
    Soft Matter; 2021 Sep; 17(37):8523-8535. PubMed ID: 34499062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stiffness can mediate balance between hydrodynamic forces and avidity to impact the targeting of flexible polymeric nanoparticles in flow.
    Farokhirad S; Ranganathan A; Myerson J; Muzykantov VR; Ayyaswamy PS; Eckmann DM; Radhakrishnan R
    Nanoscale; 2019 Apr; 11(14):6916-6928. PubMed ID: 30912772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the Interaction Between Supercarrier RBC Membrane and Nanoparticles for Optimal Drug Delivery.
    Wang S; Ma S; Li R; Qi X; Han K; Guo L; Li X
    J Mol Biol; 2023 Jan; 435(1):167539. PubMed ID: 35292348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vascular-targeted particle binding efficacy in the presence of rigid red blood cells: Implications for performance in diseased blood.
    Gutierrez M; Ojeda LS; Eniola-Adefeso O
    Biomicrofluidics; 2018 Jul; 12(4):042217. PubMed ID: 30018696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.