These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22375153)

  • 21. Effect of particle collisions and aggregation on red blood cell passage through a bifurcation.
    Chesnutt JK; Marshall JS
    Microvasc Res; 2009 Dec; 78(3):301-13. PubMed ID: 19766127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of nanoparticle binding dynamics in microcirculation using an adhesion probability function.
    Sohrabi S; Yunus DE; Xu J; Yang J; Liu Y
    Microvasc Res; 2016 Nov; 108():41-7. PubMed ID: 27423938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lattice Boltzmann simulation of blood flow in digitized vessel networks.
    Sun C; Munn LL
    Comput Math Appl; 2008 Apr; 55(7):1594-1600. PubMed ID: 19343080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shape oscillations of elastic particles in shear flow.
    Subramaniam DR; Gee DJ
    J Mech Behav Biomed Mater; 2016 Sep; 62():534-544. PubMed ID: 27294284
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite-sized gas bubble motion in a blood vessel: non-Newtonian effects.
    Mukundakrishnan K; Ayyaswamy PS; Eckmann DM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036303. PubMed ID: 18851139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational fluid dynamic simulation of two-fluid non-Newtonian nanohemodynamics through a diseased artery with a stenosis and aneurysm.
    Dubey A; Vasu B; Anwar Bég O; Gorla RSR; Kadir A
    Comput Methods Biomech Biomed Engin; 2020 Jun; 23(8):345-371. PubMed ID: 32098508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Vahidkhah K; Fatouraee N
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamical clustering of red blood cells in capillary vessels.
    Boryczko K; Dzwinel W; Yuen DA
    J Mol Model; 2003 Feb; 9(1):16-33. PubMed ID: 12638008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mesoscale simulation of blood flow in small vessels.
    Bagchi P
    Biophys J; 2007 Mar; 92(6):1858-77. PubMed ID: 17208982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer.
    Secomb TW; Hsu R; Pries AR
    Microcirculation; 2002 Jul; 9(3):189-96. PubMed ID: 12080416
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell and nanoparticle transport in tumour microvasculature: the role of size, shape and surface functionality of nanoparticles.
    Li Y; Lian Y; Zhang LT; Aldousari SM; Hedia HS; Asiri SA; Liu WK
    Interface Focus; 2016 Feb; 6(1):20150086. PubMed ID: 26855759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heterogeneous partition of cellular blood-borne nanoparticles through microvascular bifurcations.
    Liu ZL; Clausen JR; Wagner JL; Butler KS; Bolintineanu DS; Lechman JB; Rao RR; Aidun CK
    Phys Rev E; 2020 Jul; 102(1-1):013310. PubMed ID: 32795082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better.
    Lee TR; Choi M; Kopacz AM; Yun SH; Liu WK; Decuzzi P
    Sci Rep; 2013; 3():2079. PubMed ID: 23801070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Physiologically-Based Mathematical Model for Quantifying Nanoparticle Distribution in Tumors.
    Dogra P; Chuang YL; Butner JD; Cristini V; Wang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2852-2855. PubMed ID: 31946487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow.
    Jurney P; Agarwal R; Singh V; Choi D; Roy K; Sreenivasan SV; Shi L
    J Control Release; 2017 Jan; 245():170-176. PubMed ID: 27916535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels.
    Liao CT; Chen YL
    Biomicrofluidics; 2019 Nov; 13(6):064115. PubMed ID: 31768201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticle Attachment to Erythrocyte Via the Glycophorin A Targeted ERY1 Ligand Enhances Binding without Impacting Cellular Function.
    Sahoo K; Koralege RS; Flynn N; Koteeswaran S; Clark P; Hartson S; Liu J; Ramsey JD; Pope C; Ranjan A
    Pharm Res; 2016 May; 33(5):1191-203. PubMed ID: 26812966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle hardness controls the internalization pathway for drug delivery.
    Li Y; Zhang X; Cao D
    Nanoscale; 2015 Feb; 7(6):2758-69. PubMed ID: 25585060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.