BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22375547)

  • 1. Effect of carbon sources on the removal of 1,1,2-trichloroethane and 1,1,2,2-tetrachloroethane in UASB reactor.
    Basu D; Asolekar SR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(4):638-44. PubMed ID: 22375547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of 1,1,2,2-tetrachloroethane in Upflow anaerobic sludge blanket (UASB) reactor.
    Basu D; Gupta SK
    Bioresour Technol; 2010 Jan; 101(1):21-5. PubMed ID: 19699084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of UASB reactor in the biotreatment of 1,1,2-Trichloroethane.
    Basu D; Asolekar SR
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(2):267-73. PubMed ID: 22242879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of substrate removal kinetics for UASB reactors treating chlorinated ethanes.
    Basu D; Asolekar SR
    Environ Sci Pollut Res Int; 2012 Jul; 19(6):2419-27. PubMed ID: 22286857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pentachlorophenol and chemical oxygen demand mass concentrations in influent on operational behaviors of upflow anaerobic sludge blanket (UASB) reactor.
    Shen DS; He R; Liu XW; Long Y
    J Hazard Mater; 2006 Aug; 136(3):645-53. PubMed ID: 16513261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving solids retention in upflow anaerobic sludge blanket reactors at low temperatures using lamella settlers.
    Halalsheh MM; Muhsen HH; Shatanawi KM; Field JA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Jan; 45(9):1054-9. PubMed ID: 20526935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of 4-chlorophenol in UASB reactor under methanogenic conditions.
    Majumder PS; Gupta SK
    Bioresour Technol; 2008 Jul; 99(10):4169-77. PubMed ID: 17928222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of shock 2,4-dichlorophenol (DCP) and cod loading rates on the removal of 2,4-DCP in a sequential upflow anaerobic sludge blanket/aerobic completely stirred tank reactor system.
    Uluköy A; Sponza DT
    Environ Technol; 2008 Apr; 29(4):413-21. PubMed ID: 18619146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of halogenated ethanes by green rust.
    O'Loughlin EJ; Burris DR
    Environ Toxicol Chem; 2004 Jan; 23(1):41-8. PubMed ID: 14768865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of carbon sources and shock loading on the removal of chlorophenols in sequential anaerobic-aerobic reactors.
    Majumder PS; Gupta SK
    Bioresour Technol; 2008 May; 99(8):2930-7. PubMed ID: 17706423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of 1,1,1,2-tetrachloroethane under methanogenic conditions.
    Culubret EN; Luz M; Amils R; Sanz JL
    Water Sci Technol; 2001; 44(4):117-22. PubMed ID: 11575074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of chlorophenols in sequential anaerobic-aerobic reactors.
    Majumder PS; Gupta SK
    Bioresour Technol; 2007 Jan; 98(1):118-29. PubMed ID: 16406608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acclimation of the trichloroethylene-degrading anaerobic granular sludge and the degradation characteristics in an upflow anaerobic sludge blanket reactor.
    Zhang Y; Liu Y; Hu M; Jiang Z
    Water Sci Technol; 2014; 69(1):120-7. PubMed ID: 24434977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions.
    Song H; Carraway ER
    Environ Sci Technol; 2005 Aug; 39(16):6237-45. PubMed ID: 16173587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane.
    Bandara WM; Satoh H; Sasakawa M; Nakahara Y; Takahashi M; Okabe S
    Water Res; 2011 May; 45(11):3533-40. PubMed ID: 21550096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of carbofuran-bearing synthetic wastewater using UASB process.
    Madhubabu S; Kumar M; Philip L; Venkobachar C
    J Environ Sci Health B; 2007 Feb; 42(2):189-99. PubMed ID: 17365334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UASB performance for bleached and unbleached kraft pulp synthetic wastewater treatment.
    Buzzini AP; Gianotti EP; Pires EC
    Chemosphere; 2005 Mar; 59(1):55-61. PubMed ID: 15698644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of shock and mixed nitrophenolic loadings on the performance of UASB reactors.
    Karim K; Gupta SK
    Water Res; 2006 Mar; 40(5):935-42. PubMed ID: 16455128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.
    Halalsheh MM; Abu Rumman ZM; Field JA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):383-8. PubMed ID: 20390881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.