BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 22375694)

  • 61. Chirality-Selective Functionalization of Semiconducting Carbon Nanotubes with a Reactivity-Switchable Molecule.
    Powell LR; Kim M; Wang Y
    J Am Chem Soc; 2017 Sep; 139(36):12533-12540. PubMed ID: 28844140
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Understanding the binding mechanism of various chiral SWCNTs and ssDNA: a computational study.
    Neihsial S; Periyasamy G; Samanta PK; Pati SK
    J Phys Chem B; 2012 Dec; 116(51):14754-9. PubMed ID: 23199121
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nitric Oxide Detection Using a Corona Phase Molecular Recognition Site on Chiral Single-Walled Carbon Nanotubes.
    Bayat R; Bekmezci M; Akin M; Isik I; Sen F
    ACS Appl Bio Mater; 2023 Nov; 6(11):4828-4835. PubMed ID: 37830479
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Compositional Analysis of ssDNA-Coated Single-Wall Carbon Nanotubes through UV Absorption Spectroscopy.
    Alizadehmojarad AA; Bachilo SM; Weisman RB
    Nano Lett; 2022 Oct; 22(20):8203-8209. PubMed ID: 36201880
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Variable range hopping in single-wall carbon nanotube thin films: a processing-structure-property relationship study.
    Luo S; Liu T; Benjamin SM; Brooks JS
    Langmuir; 2013 Jul; 29(27):8694-702. PubMed ID: 23751088
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Divalent Metal Cation Optical Sensing Using Single-Walled Carbon Nanotube Corona Phase Molecular Recognition.
    Gong X; Cho SY; Kuo S; Ogunlade B; Tso K; Salem DP; Strano MS
    Anal Chem; 2022 Nov; 94(47):16393-16401. PubMed ID: 36378652
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Solubilizing carbon nanotubes through noncovalent functionalization. Insight from the reversible wrapping of alginic acid around a single-walled carbon nanotube.
    Liu Y; Chipot C; Shao X; Cai W
    J Phys Chem B; 2010 May; 114(17):5783-9. PubMed ID: 20349928
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structure and electronic properties of "DNA-gold-nanotube" systems: a quantum chemical analysis.
    Pannopard P; Khongpracha P; Probst M; Limtrakul J
    J Mol Graph Model; 2008 Apr; 26(7):1066-75. PubMed ID: 17977037
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ionic Strength-Mediated Phase Transitions of Surface-Adsorbed DNA on Single-Walled Carbon Nanotubes.
    Salem DP; Gong X; Liu AT; Koman VB; Dong J; Strano MS
    J Am Chem Soc; 2017 Nov; 139(46):16791-16802. PubMed ID: 29052988
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite.
    Iliafar S; Mittal J; Vezenov D; Jagota A
    J Am Chem Soc; 2014 Sep; 136(37):12947-57. PubMed ID: 25162693
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.
    Wei L; Tezuka N; Umeyama T; Imahori H; Chen Y
    Nanoscale; 2011 Apr; 3(4):1845-9. PubMed ID: 21384044
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions.
    Siitonen AJ; Tsyboulski DA; Bachilo SM; Weisman RB
    Nano Lett; 2010 May; 10(5):1595-9. PubMed ID: 20377240
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-Purity Semiconducting Single-Walled Carbon Nanotubes: A Key Enabling Material in Emerging Electronics.
    Lefebvre J; Ding J; Li Z; Finnie P; Lopinski G; Malenfant PRL
    Acc Chem Res; 2017 Oct; 50(10):2479-2486. PubMed ID: 28902990
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Multispectral Fingerprinting Resolves Dynamics of Nanomaterial Trafficking in Primary Endothelial Cells.
    Gravely M; Roxbury D
    ACS Nano; 2021 Jul; 15(7):12388-12404. PubMed ID: 34180232
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Spontaneous encapsulation behavior of ionic liquid into carbon nanotube.
    Jiang Y; Zhang K; Li H; He Y; Song X
    Nanoscale; 2012 Nov; 4(22):7063-9. PubMed ID: 23051856
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids.
    Lustig SR; Jagota A; Khripin C; Zheng M
    J Phys Chem B; 2005 Feb; 109(7):2559-66. PubMed ID: 16851257
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Acceleration of suspending single-walled carbon nanotubes in BSA aqueous solution induced by amino acid molecules.
    Kato H; Nakamura A; Horie M
    J Colloid Interface Sci; 2015 Jan; 437():156-162. PubMed ID: 25313479
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Single-walled carbon nanotube based coating modified with reduced graphene oxide for the design of amperometric biosensors.
    Barkauskas J; Mikoliunaite L; Paklonskaite I; Genys P; Petroniene JJ; Morkvenaite-Vilkonciene I; Ramanaviciene A; Samukaite-Bubniene U; Ramanavicius A
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():515-523. PubMed ID: 30813053
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ionic Strength-Mediated "DNA Corona Defects" for Efficient Arrangement of Single-Walled Carbon Nanotubes.
    Luo Y; Wu N; Niu L; Hao P; Sun X; Chen F; Zhao Y
    Adv Sci (Weinh); 2024 Apr; 11(15):e2308532. PubMed ID: 38233163
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Computational MitoTarget Scanning Based on Topological Vacancies of Single-Walled Carbon Nanotubes with the Human Mitochondrial Voltage-Dependent Anion Channel (hVDAC1).
    González-Durruthy M; Monserrat JM; Viera de Oliveira P; Fagan SB; Werhli AV; Machado K; Melo A; González-Díaz H; Concu R; D S Cordeiro MN
    Chem Res Toxicol; 2019 Apr; 32(4):566-577. PubMed ID: 30868869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.