These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22376064)

  • 1. Suspending multi-walled carbon nanotubes by humic acids from a peat soil.
    Zhou X; Shu L; Zhao H; Guo X; Wang X; Tao S; Xing B
    Environ Sci Technol; 2012 Apr; 46(7):3891-7. PubMed ID: 22376064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption of peat humic acids to multi-walled carbon nanotubes.
    Wang X; Shu L; Wang Y; Xu B; Bai Y; Tao S; Xing B
    Environ Sci Technol; 2011 Nov; 45(21):9276-83. PubMed ID: 21928791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size characterization of the associations between carbon nanotubes and humic acids in aqueous media by asymmetrical flow field-flow fractionation combined with multi-angle light scattering.
    Gigault J; Grassl B; Lespes G
    Chemosphere; 2012 Jan; 86(2):177-82. PubMed ID: 22079301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of surface oxygen on the interactions of carbon nanotubes with natural organic matter.
    Smith B; Yang J; Bitter JL; Ball WP; Fairbrother DH
    Environ Sci Technol; 2012 Dec; 46(23):12839-47. PubMed ID: 23145852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes.
    Wang X; Tao S; Xing B
    Environ Sci Technol; 2009 Aug; 43(16):6214-9. PubMed ID: 19746716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-bound humic acid increased Pb²⁺ sorption on carbon nanotubes.
    Lin D; Tian X; Li T; Zhang Z; He X; Xing B
    Environ Pollut; 2012 Aug; 167():138-47. PubMed ID: 22575094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of humic acid to functionalized multi-walled carbon nanotubes.
    Wang F; Yao J; Chen H; Yi Z; Xing B
    Environ Pollut; 2013 Sep; 180():1-6. PubMed ID: 23711903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The removal of U(VI) from aqueous solution by oxidized multiwalled carbon nanotubes.
    Sun Y; Yang S; Sheng G; Guo Z; Wang X
    J Environ Radioact; 2012 Feb; 105():40-7. PubMed ID: 22230020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of polyethyleneimine-mediated functionalization of multi-walled carbon nanotubes on earthworm bioaccumulation and sorption by soils.
    Petersen EJ; Pinto RA; Zhang L; Huang Q; Landrum PF; Weber WJ
    Environ Sci Technol; 2011 Apr; 45(8):3718-24. PubMed ID: 21434629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion state and humic acids concentration-dependent sorption of pyrene to carbon nanotubes.
    Zhang X; Kah M; Jonker MT; Hofmann T
    Environ Sci Technol; 2012 Jul; 46(13):7166-73. PubMed ID: 22656042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water.
    Zhang L; Petersen EJ; Zhang W; Chen Y; Cabrera M; Huang Q
    Environ Pollut; 2012 Jul; 166():75-81. PubMed ID: 22481179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the heterogeneous adsorption of humic acid fluorescent components on multi-walled carbon nanotubes by excitation-emission matrix and parallel factor analysis.
    Yang C; Liu Y; Cen Q; Zhu Y; Zhang Y
    Ecotoxicol Environ Saf; 2018 Feb; 148():194-200. PubMed ID: 29055203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of functionalized multi-walled carbon nanotubes on L02 cells].
    Liu ZB; Zhou B; Wang HY; Zhang HL; Liu LX; Zhu DW; Leng XG
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2010 Aug; 32(4):449-55. PubMed ID: 20868609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures.
    Zhang D; Pan B; Cook RL; Xing B
    Environ Pollut; 2015 Jan; 196():292-99. PubMed ID: 25463725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ionic strength and temperature on the aggregation and deposition of multi-walled carbon nanotubes.
    Wang L; Yang X; Wang Q; Zeng Y; Ding L; Jiang W
    J Environ Sci (China); 2017 Jan; 51():248-255. PubMed ID: 28115136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes.
    Hu J; Tong Z; Hu Z; Chen G; Chen T
    J Colloid Interface Sci; 2012 Jul; 377(1):355-61. PubMed ID: 22513167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of fulvic acid by carbon nanotubes from water.
    Yang K; Xing B
    Environ Pollut; 2009 Apr; 157(4):1095-100. PubMed ID: 19084305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar, activated carbon, and carbon nanotubes have different effects on fate of (14)C-catechol and microbial community in soil.
    Shan J; Ji R; Yu Y; Xie Z; Yan X
    Sci Rep; 2015 Oct; 5():16000. PubMed ID: 26515132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes.
    Tian X; Li T; Yang K; Xu Y; Lu H; Lin D
    Chemosphere; 2012 Nov; 89(11):1316-22. PubMed ID: 22726423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method.
    Zardini HZ; Amiri A; Shanbedi M; Maghrebi M; Baniadam M
    Colloids Surf B Biointerfaces; 2012 Apr; 92():196-202. PubMed ID: 22197225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.