BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22376120)

  • 1. Free energy difference in indolicidin attraction to eukaryotic and prokaryotic model cell membranes.
    Yeh IC; Ripoll DR; Wallqvist A
    J Phys Chem B; 2012 Mar; 116(10):3387-96. PubMed ID: 22376120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy.
    Shaw JE; Alattia JR; Verity JE; Privé GG; Yip CM
    J Struct Biol; 2006 Apr; 154(1):42-58. PubMed ID: 16459101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of indolicidin association with model lipid bilayers.
    Hsu JC; Yip CM
    Biophys J; 2007 Jun; 92(12):L100-2. PubMed ID: 17416617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane.
    Tolokh IS; Vivcharuk V; Tomberli B; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031911. PubMed ID: 19905150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles.
    Rozek A; Friedrich CL; Hancock RE
    Biochemistry; 2000 Dec; 39(51):15765-74. PubMed ID: 11123901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of α-synuclein to supported lipid bilayers: positioning and role of electrostatics.
    Hellstrand E; Grey M; Ainalem ML; Ankner J; Forsyth VT; Fragneto G; Haertlein M; Dauvergne MT; Nilsson H; Brundin P; Linse S; Nylander T; Sparr E
    ACS Chem Neurosci; 2013 Oct; 4(10):1339-51. PubMed ID: 23823878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free energy of PAMAM dendrimer adsorption onto model biological membranes.
    Kim Y; Kwak Y; Chang R
    J Phys Chem B; 2014 Jun; 118(24):6792-802. PubMed ID: 24884286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study.
    Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH
    Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic effects on deposition of multiple phospholipid bilayers at oxide surfaces.
    Oleson TA; Sahai N; Pedersen JA
    J Colloid Interface Sci; 2010 Dec; 352(2):327-36. PubMed ID: 20869065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces.
    Liu KW; Biswal SL
    Anal Chem; 2010 Sep; 82(18):7527-32. PubMed ID: 20726504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism.
    Fernandez DI; Le Brun AP; Whitwell TC; Sani MA; James M; Separovic F
    Phys Chem Chem Phys; 2012 Dec; 14(45):15739-51. PubMed ID: 23093307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane activity of biomimetic facially amphiphilic antibiotics.
    Arnt L; Rennie JR; Linser S; Willumeit R; Tew GN
    J Phys Chem B; 2006 Mar; 110(8):3527-32. PubMed ID: 16494408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA.
    Hsu CH; Chen C; Jou ML; Lee AY; Lin YC; Yu YP; Huang WT; Wu SH
    Nucleic Acids Res; 2005; 33(13):4053-64. PubMed ID: 16034027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers.
    Askou HJ; Jakobsen RN; Fojan P
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4360-9. PubMed ID: 19049026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.