BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2237625)

  • 1. 1990 Volvo Award in experimental studies. The dependence of intervertebral disc mechanical properties on physiologic conditions.
    Keller TS; Holm SH; Hansson TH; Spengler DM
    Spine (Phila Pa 1976); 1990 Aug; 15(8):751-61. PubMed ID: 2237625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experiments study on mechanical behavior of porcine lumbar intervertebral disc after nucleotomy under compression].
    Zhu S; Yang X; Luan Y; Liu Q; Zhang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2019 Aug; 36(4):590-595. PubMed ID: 31441259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-static and dynamic properties of the intervertebral disc: experimental study and model parameter determination for the porcine lumbar motion segment.
    Araújo ÂR; Peixinho N; Pinho AC; Claro JC
    Acta Bioeng Biomech; 2015; 17(4):59-66. PubMed ID: 26900017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep experimental study on the lumbar intervertebral disk under vibration compression load.
    Yang X; Cheng X; Luan Y; Liu Q; Zhang C
    Proc Inst Mech Eng H; 2019 Aug; 233(8):858-867. PubMed ID: 31203788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading.
    Koeller W; Funke F; Hartmann F
    Biorheology; 1984; 21(5):675-86. PubMed ID: 6518283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo creep behavior of the normal and degenerated porcine intervertebral disk: a preliminary report.
    Keller TS; Hansson TH; Holm SH; Pope MM; Spengler DM
    J Spinal Disord; 1988; 1(4):267-78. PubMed ID: 2980254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intervertebral disc response to cyclic loading--an animal model.
    Ekström L; Kaigle A; Hult E; Holm S; Rostedt M; Hansson T
    Proc Inst Mech Eng H; 1996; 210(4):249-58. PubMed ID: 9046185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo Award in Basic Science.
    Adams MA; Hutton WC
    Spine (Phila Pa 1976); 1982; 7(3):184-91. PubMed ID: 7112236
    [No Abstract]   [Full Text] [Related]  

  • 10. In vitro torsion-induced stress distribution changes in porcine intervertebral discs.
    van Deursen DL; Snijders CJ; Kingma I; van Dieën JH
    Spine (Phila Pa 1976); 2001 Dec; 26(23):2582-6. PubMed ID: 11725239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc.
    Bass EC; Duncan NA; Hariharan JS; Dusick J; Bueff HU; Lotz JC
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2867-76. PubMed ID: 9431622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations of the standard linear solid model of intervertebral discs subject to prolonged loading and low-frequency vibration in axial compression.
    Li S; Patwardhan AG; Amirouche FM; Havey R; Meade KP
    J Biomech; 1995 Jul; 28(7):779-90. PubMed ID: 7657676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between the porcine lumbar intervertebral disc, zygapophysial joints, and paraspinal muscles.
    Indahl A; Kaigle AM; Reikeräs O; Holm SH
    Spine (Phila Pa 1976); 1997 Dec; 22(24):2834-40. PubMed ID: 9431619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies.
    Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH
    J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of loading rate and hydration on the mechanical properties of the disc.
    Race A; Broom ND; Robertson P
    Spine (Phila Pa 1976); 2000 Mar; 25(6):662-9. PubMed ID: 10752096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creep characteristics of the human spinal column.
    Kazarian LE
    Orthop Clin North Am; 1975 Jan; 6(1):3-18. PubMed ID: 1113976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal and spatial variations of pressure within intervertebral disc nuclei.
    Schmidt H; Shirazi-Adl A
    J Mech Behav Biomed Mater; 2018 Mar; 79():309-313. PubMed ID: 29353774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load.
    Ohshima H; Tsuji H; Hirano N; Ishihara H; Katoh Y; Yamada H
    Spine (Phila Pa 1976); 1989 Nov; 14(11):1234-44. PubMed ID: 2603057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.