These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22377902)

  • 41. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes.
    de Souza Costa ET; Guilherme LR; de Melo EE; Ribeiro BT; Dos Santos B Inácio E; da Costa Severiano E; Faquin V; Hale BA
    Biol Trace Elem Res; 2012 Jan; 145(1):93-100. PubMed ID: 21826609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay.
    Li J; Huang Y; Hu Y; Jin S; Bao Q; Wang F; Xiang M; Xie H
    J Environ Sci (China); 2016 Jun; 44():131-140. PubMed ID: 27266309
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge.
    Kidd PS; Domínguez-Rodríguez MJ; Díez J; Monterroso C
    Chemosphere; 2007 Jan; 66(8):1458-67. PubMed ID: 17109934
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Influences of soil properties and leaching on nickel toxicity to barley root elongation.
    Li B; Zhang H; Ma Y; McLaughlin MJ
    Ecotoxicol Environ Saf; 2011 Mar; 74(3):459-66. PubMed ID: 21030088
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Origin of lead associated with different reactive phases in Scottish upland soils: an assessment made using sequential extraction and isotope analysis.
    Bacon JR; Hewitt IJ; Cooper P
    J Environ Monit; 2004 Sep; 6(9):766-73. PubMed ID: 15346181
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings.
    Wang CR; Tian Y; Wang XR; Yu HX; Lu XW; Wang C; Wang H
    Chemosphere; 2010 Aug; 80(9):965-71. PubMed ID: 20591469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Toxicity thresholds and predicted model of Pb added to soils with various properties and its leaching factors as determined by barley root-elongation test].
    Li N; Guo XY; Chen SB; Liu B; Song WE
    Ying Yong Sheng Tai Xue Bao; 2015 Jul; 26(7):2177-82. PubMed ID: 26710648
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phytotoxicity assays with hydroxyapatite nanoparticles lead the way to recover firing range soils.
    Lago-Vila M; Rodríguez-Seijo A; Vega FA; Arenas-Lago D
    Sci Total Environ; 2019 Nov; 690():1151-1161. PubMed ID: 31470478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of lead solubility in soil contaminated with lead shot: effect of soil pH.
    Rooney CP; McLaren RG; Condron LM
    Environ Pollut; 2007 Sep; 149(2):149-57. PubMed ID: 17360092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Impacts of chemical amendment and plant growth on lead speciation and enzyme activities in a shooting range soil: an x-ray absorption fine structure investigation.
    Hashimoto Y; Matsufuru H; Takaoka M; Tanida H; Sato T
    J Environ Qual; 2009; 38(4):1420-8. PubMed ID: 19465717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biosolids compost amendment for reducing soil lead hazards: a pilot study of Orgro amendment and grass seeding in urban yards.
    Farfel MR; Orlova AO; Chaney RL; Lees PS; Rohde C; Ashley PJ
    Sci Total Environ; 2005 Mar; 340(1-3):81-95. PubMed ID: 15752494
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phytotoxicity and accumulation of lead in Australian native vegetation.
    Lamb DT; Ming H; Megharaj M; Naidu R
    Arch Environ Contam Toxicol; 2010 Apr; 58(3):613-21. PubMed ID: 20112105
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Predicting plant uptake and toxicity of lead (Pb) in long-term contaminated soils from derived transfer functions.
    Kader M; Lamb DT; Mahbub KR; Megharaj M; Naidu R
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):15460-70. PubMed ID: 27117154
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland.
    Farmer JG; Broadway A; Cave MR; Wragg J; Fordyce FM; Graham MC; Ngwenya BT; Bewley RJ
    Sci Total Environ; 2011 Nov; 409(23):4958-65. PubMed ID: 21930292
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The value of metals bioavailability and speciation information for ecological risk assessment in arid soils.
    Suedel BC; Nicholson A; Day CH; Spicer J
    Integr Environ Assess Manag; 2006 Oct; 2(4):355-64. PubMed ID: 17069177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.
    Park JH; Bolan NS; Chung JW; Naidu R; Megharaj M
    J Environ Monit; 2011 Aug; 13(8):2234-42. PubMed ID: 21748178
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scale and causes of lead contamination in Chinese tea.
    Han WY; Zhao FJ; Shi YZ; Ma LF; Ruan JY
    Environ Pollut; 2006 Jan; 139(1):125-32. PubMed ID: 15998560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of organic amendment and plant roots on the solubility and mobilization of lead in soils at a shooting range.
    Levonmäki M; Hartikainen H; Kairesalo T
    J Environ Qual; 2006; 35(4):1026-31. PubMed ID: 16738387
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphate treatment of firing range soils: lead fixation or phosphorus release?
    Dermatas D; Chrysochoou M; Grubb DG; Xu X
    J Environ Qual; 2008; 37(1):47-56. PubMed ID: 18178877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.