BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22378402)

  • 1. Label-free 3D imaging of microstructure, blood, and lymphatic vessels within tissue beds in vivo.
    Zhi Z; Jung Y; Wang RK
    Opt Lett; 2012 Mar; 37(5):812-4. PubMed ID: 22378402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lymphatic response to depilation-induced inflammation in mouse ear assessed with label-free optical lymphangiography.
    Qin W; Baran U; Wang R
    Lasers Surg Med; 2015 Oct; 47(8):669-76. PubMed ID: 26224650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercontinuum light source enables in vivo optical microangiography of capillary vessels within tissue beds.
    Zhi Z; Qin J; An L; Wang RK
    Opt Lett; 2011 Aug; 36(16):3169-71. PubMed ID: 21847196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free optical lymphangiography: development of an automatic segmentation method applied to optical coherence tomography to visualize lymphatic vessels using Hessian filters.
    Yousefi S; Qin J; Zhi Z; Wang RK
    J Biomed Opt; 2013 Aug; 18(8):86004. PubMed ID: 23922124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoacoustic lymphangiography.
    Kajita H; Oh A; Urano M; Takemaru M; Imanishi N; Otaki M; Yagi T; Aiso S; Kishi K
    J Surg Oncol; 2020 Jan; 121(1):48-50. PubMed ID: 31165483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical microangiography provides correlation between microstructure and microvasculature of optic nerve head in human subjects.
    An L; Johnstone M; Wang RK
    J Biomed Opt; 2012 Nov; 17(11):116018. PubMed ID: 23128971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free volumetric imaging of conjunctival collecting lymphatics ex vivo by optical coherence tomography lymphangiography.
    Gong P; Yu DY; Wang Q; Yu PK; Karnowski K; Heisler M; Francke A; An D; Sarunic MV; Sampson DD
    J Biophotonics; 2018 Aug; 11(8):e201800070. PubMed ID: 29920959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional Imaging of Lymphatic System in Lymphedema Legs Using Interstitial Computed Tomography-lymphography.
    Yamada K; Shinaoka A; Kimata Y
    Acta Med Okayama; 2017 Apr; 71(2):171-177. PubMed ID: 28420899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.
    An L; Wang RK
    Opt Express; 2008 Jul; 16(15):11438-52. PubMed ID: 18648464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source.
    Zhi Z; Qin W; Wang J; Wei W; Wang RK
    Opt Lett; 2015 Apr; 40(8):1779-82. PubMed ID: 25872072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo OCT microangiography of rodent iris.
    Choi WJ; Zhi Z; Wang RK
    Opt Lett; 2014 Apr; 39(8):2455-8. PubMed ID: 24979017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymph vessels visualization from optical coherence tomography data using depth-resolved attenuation coefficient calculation.
    Moiseev AA; Sirotkina MA; Potapov AL; Matveev LA; Vagapova NN; Kuznetsova IA; Gladkova ND
    J Biophotonics; 2021 Sep; 14(9):e202100055. PubMed ID: 34057296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical Microangiography: A Label Free 3D Imaging Technology to Visualize and Quantify Blood Circulations within Tissue Beds in vivo.
    Wang RK
    IEEE J Sel Top Quantum Electron; 2010 May; 16(3):545-554. PubMed ID: 20657761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-Free In Vivo Imaging of Corneal Lymphatic Vessels Using Microscopic Optical Coherence Tomography.
    Horstmann J; Schulz-Hildebrandt H; Bock F; Siebelmann S; Lankenau E; Hüttmann G; Steven P; Cursiefen C
    Invest Ophthalmol Vis Sci; 2017 Nov; 58(13):5880-5886. PubMed ID: 29149239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-Dimensional Visualization of the Lymphatic Vasculature.
    Dierkes C; Scherzinger A; Kiefer F
    Methods Mol Biol; 2018; 1846():1-18. PubMed ID: 30242749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super-resolution spectral estimation of optical micro-angiography for quantifying blood flow within microcirculatory tissue beds in vivo.
    Yousefi S; Qin J; Wang RK
    Biomed Opt Express; 2013 Jul; 4(7):1214-28. PubMed ID: 23847744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does optical microangiography provide accurate imaging of capillary vessels?: validation using multiphoton microscopy.
    Wang H; Baran U; Li Y; Qin W; Wang W; Zeng H; Wang RK
    J Biomed Opt; 2014; 19(10):106011. PubMed ID: 25341071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of microcirculation dynamics during cutaneous wound healing phases in vivo using optical microangiography.
    Yousefi S; Qin J; Dziennis S; Wang RK
    J Biomed Opt; 2014; 19(7):76015. PubMed ID: 25036212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full range complex ultrahigh sensitive optical microangiography.
    An L; Wang RK
    Opt Lett; 2011 Mar; 36(6):831-3. PubMed ID: 21403699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole Organ Blood and Lymphatic Vessels Imaging (WOBLI).
    Oren R; Fellus-Alyagor L; Addadi Y; Bochner F; Gutman H; Blumenreich S; Dafni H; Dekel N; Neeman M; Lazar S
    Sci Rep; 2018 Jan; 8(1):1412. PubMed ID: 29362484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.