These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22378423)

  • 1. Chip-based frequency combs with sub-100 GHz repetition rates.
    Johnson AR; Okawachi Y; Levy JS; Cardenas J; Saha K; Lipson M; Gaeta AL
    Opt Lett; 2012 Mar; 37(5):875-7. PubMed ID: 22378423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Octave-spanning frequency comb generation in a silicon nitride chip.
    Okawachi Y; Saha K; Levy JS; Wen YH; Lipson M; Gaeta AL
    Opt Lett; 2011 Sep; 36(17):3398-400. PubMed ID: 21886223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing coherence in microcavity frequency combs via optical pulse shaping.
    Ferdous F; Miao H; Wang PH; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Sep; 20(19):21033-43. PubMed ID: 23037227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of correlation between route to formation, coherence, noise, and communication performance of Kerr combs.
    Wang PH; Ferdous F; Miao H; Wang J; Leaird DE; Srinivasan K; Chen L; Aksyuk V; Weiner AM
    Opt Express; 2012 Dec; 20(28):29284-95. PubMed ID: 23388754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband parametric frequency comb generation with a 1-μm pump source.
    Saha K; Okawachi Y; Levy JS; Lau RK; Luke K; Foster MA; Lipson M; Gaeta AL
    Opt Express; 2012 Nov; 20(24):26935-41. PubMed ID: 23187548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical frequency comb generation from a monolithic microresonator.
    Del'Haye P; Schliesser A; Arcizet O; Wilken T; Holzwarth R; Kippenberg TJ
    Nature; 2007 Dec; 450(7173):1214-7. PubMed ID: 18097405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing.
    Supradeepa VR; Weiner AM
    Opt Lett; 2012 Aug; 37(15):3066-8. PubMed ID: 22859087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators.
    Xue X; Xuan Y; Wang C; Wang PH; Liu Y; Niu B; Leaird DE; Qi M; Weiner AM
    Opt Express; 2016 Jan; 24(1):687-98. PubMed ID: 26832298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelocking and femtosecond pulse generation in chip-based frequency combs.
    Saha K; Okawachi Y; Shim B; Levy JS; Salem R; Johnson AR; Foster MA; Lamont MR; Lipson M; Gaeta AL
    Opt Express; 2013 Jan; 21(1):1335-43. PubMed ID: 23389027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical frequency comb generation from aluminum nitride microring resonator.
    Jung H; Xiong C; Fong KY; Zhang X; Tang HX
    Opt Lett; 2013 Aug; 38(15):2810-3. PubMed ID: 23903149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms.
    Wu R; Supradeepa VR; Long CM; Leaird DE; Weiner AM
    Opt Lett; 2010 Oct; 35(19):3234-6. PubMed ID: 20890344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser.
    Juan YS; Lin FY
    Opt Express; 2009 Oct; 17(21):18596-605. PubMed ID: 20372590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter.
    Ibrahim S; Fontaine NK; Djordjevic SS; Guan B; Su T; Cheung S; Scott RP; Pomerene AT; Seaford LL; Hill CM; Danziger S; Ding Z; Okamoto K; Yoo SJ
    Opt Express; 2011 Jul; 19(14):13245-56. PubMed ID: 21747479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs.
    Li J; Lee H; Chen T; Vahala KJ
    Phys Rev Lett; 2012 Dec; 109(23):233901. PubMed ID: 23368202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency comb generation via synchronous pumped χ
    Cheng R; Yu M; Shams-Ansari A; Hu Y; Reimer C; Zhang M; Lončar M
    Nat Commun; 2024 May; 15(1):3921. PubMed ID: 38724496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-order photonic differentiator employing on-chip cascaded microring resonators.
    Dong J; Zheng A; Gao D; Liao S; Lei L; Huang D; Zhang X
    Opt Lett; 2013 Mar; 38(5):628-30. PubMed ID: 23455246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact multi-million Q resonators and 100  MHz passband filter bank in a thick-SOI photonics platform.
    Zhang B; Al Qubaisi K; Cherchi M; Harjanne M; Ehrlichman Y; Khilo AN; Popović MA
    Opt Lett; 2020 Jun; 45(11):3005-3008. PubMed ID: 32479444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon-chip-based ultrafast optical oscilloscope.
    Foster MA; Salem R; Geraghty DF; Turner-Foster AC; Lipson M; Gaeta AL
    Nature; 2008 Nov; 456(7218):81-4. PubMed ID: 18987739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip.
    Pasquazi A; Caspani L; Peccianti M; Clerici M; Ferrera M; Razzari L; Duchesne D; Little BE; Chu ST; Moss DJ; Morandotti R
    Opt Express; 2013 Jun; 21(11):13333-41. PubMed ID: 23736585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.