BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22378481)

  • 1. Esterases with an introduced amidase-like hydrogen bond in the transition state have increased amidase specificity.
    Syrén PO; Hendil-Forssell P; Aumailley L; Besenmatter W; Gounine F; Svendsen A; Martinelle M; Hult K
    Chembiochem; 2012 Mar; 13(5):645-8. PubMed ID: 22378481
    [No Abstract]   [Full Text] [Related]  

  • 2. Understanding promiscuous amidase activity of an esterase from Bacillus subtilis.
    Kourist R; Bartsch S; Fransson L; Hult K; Bornscheuer UT
    Chembiochem; 2008 Jan; 9(1):67-9. PubMed ID: 18022973
    [No Abstract]   [Full Text] [Related]  

  • 3. The mechanism of the alpha-chymotrypsin and trypsin-catalyzed hydrolysis of amides. Evidence for the participation of the active serine in the amidase activity of trypsin.
    Berezin IV; Kazanskaya NF; Klyosov AA; Svedas VK
    Eur J Biochem; 1973 Oct; 38(3):529-36. PubMed ID: 4772672
    [No Abstract]   [Full Text] [Related]  

  • 4. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate.
    Valiña AL; Mazumder-Shivakumar D; Bruice TC
    Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the relationship between chemical structure and porphyria-inducing activity. V. Hydrolysis of amines and esters by chick embryo liver amidases and esterases.
    Schneck DW; Marks GS
    Biochem Pharmacol; 1972 Sep; 21(18):2509-18. PubMed ID: 4646796
    [No Abstract]   [Full Text] [Related]  

  • 6. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatty acid amide hydrolase competitively degrades bioactive amides and esters through a nonconventional catalytic mechanism.
    Patricelli MP; Cravatt BF
    Biochemistry; 1999 Oct; 38(43):14125-30. PubMed ID: 10571985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. R-stereoselective amidase from Rhodococcus erythropolis No. 7 acting on 4-chloro-3-hydroxybutyramide.
    Park HJ; Uhm KN; Kim HK
    J Microbiol Biotechnol; 2008 Mar; 18(3):552-9. PubMed ID: 18388476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity.
    Makhongela HS; Glowacka AE; Agarkar VB; Sewell BT; Weber B; Cameron RA; Cowan DA; Burton SG
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):801-11. PubMed ID: 17347819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning, sequence analysis and expression of the gene encoding a novel wide-spectrum amidase belonging to the amidase signature superfamily from Achromobacter xylosoxidans.
    Cai G; Zhu S; Wang X; Jiang W
    FEMS Microbiol Lett; 2005 Aug; 249(1):15-21. PubMed ID: 16002239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrazide synthesis: novel substrate specificity of amidase.
    Kobayashi M; Goda M; Shimizu S
    Biochem Biophys Res Commun; 1999 Mar; 256(2):415-8. PubMed ID: 10079199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploitation and characterization of three versatile amidase super family members from Delftia tsuruhatensis ZJB-05174.
    Wu ZM; Zheng RC; Zheng YG
    Enzyme Microb Technol; 2016 May; 86():93-102. PubMed ID: 26992798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.
    Nicoll AJ; Allemann RK
    Org Biomol Chem; 2004 Aug; 2(15):2175-80. PubMed ID: 15280952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of carboxypeptidase from Watermelon.
    Matoba T; Doi E
    J Biochem; 1975 Jun; 77(6):1297-303. PubMed ID: 5403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of a bacterium that degrades urethane compounds and characterization of its urethane hydrolase.
    Akutsu-Shigeno Y; Adachi Y; Yamada C; Toyoshima K; Nomura N; Uchiyama H; Nakajima-Kambe T
    Appl Microbiol Biotechnol; 2006 Apr; 70(4):422-9. PubMed ID: 16041575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the role of hydrogen bonding interactions in the substrate specificity for the loading step of polyketide synthase thioesterase domains.
    Wang M; Boddy CN
    Biochemistry; 2008 Nov; 47(45):11793-803. PubMed ID: 18850723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Converting human carbonic anhydrase II into a benzoate ester hydrolase through rational redesign.
    Höst GE; Jonsson BH
    Biochim Biophys Acta; 2008 May; 1784(5):811-5. PubMed ID: 18346474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-selective glycosylation of subtilisin Bacillus lentus causes dramatic increases in esterase activity.
    Lloyd RC; Davis BG; Jones JB
    Bioorg Med Chem; 2000 Jul; 8(7):1537-44. PubMed ID: 10976502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and characterization of a novel amidase from Paracoccus sp. M-1, showing aryl acylamidase and acyl transferase activities.
    Shen W; Chen H; Jia K; Ni J; Yan X; Li S
    Appl Microbiol Biotechnol; 2012 May; 94(4):1007-18. PubMed ID: 22101784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic synthesis of model substrates recognized by glucuronoyl esterases from Podospora anserina and Myceliophthora thermophila.
    Katsimpouras C; Bénarouche A; Navarro D; Karpusas M; Dimarogona M; Berrin JG; Christakopoulos P; Topakas E
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5507-16. PubMed ID: 24531271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.