These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Thermal effusivity measurement of conventional and organic coffee oils via photopyroelectric technique. Bedoya A; Gordillo-Delgado F; Cruz-Santillana YE; Plazas J; Marin E Food Res Int; 2017 Dec; 102():419-424. PubMed ID: 29195967 [TBL] [Abstract][Full Text] [Related]
3. Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Dias RCE; Valderrama P; Março PH; Dos Santos Scholz MB; Edelmann M; Yeretzian C Food Chem; 2018 Jul; 255():132-138. PubMed ID: 29571458 [TBL] [Abstract][Full Text] [Related]
4. Feasibility study on chemometric discrimination of roasted Arabica coffees by solvent extraction and Fourier transform infrared spectroscopy. Wang N; Fu Y; Lim LT J Agric Food Chem; 2011 Apr; 59(7):3220-6. PubMed ID: 21381653 [TBL] [Abstract][Full Text] [Related]
5. Quantitative evaluation of multiple adulterants in roasted coffee by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) and chemometrics. Reis N; Franca AS; Oliveira LS Talanta; 2013 Oct; 115():563-8. PubMed ID: 24054633 [TBL] [Abstract][Full Text] [Related]
6. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Cagliani LR; Pellegrino G; Giugno G; Consonni R Talanta; 2013 Mar; 106():169-73. PubMed ID: 23598112 [TBL] [Abstract][Full Text] [Related]
7. Discrimination between immature and mature green coffees by attenuated total reflectance and diffuse reflectance Fourier transform infrared spectroscopy. Craig AP; Franca AS; Oliveira LS J Food Sci; 2011 Oct; 76(8):C1162-8. PubMed ID: 22417580 [TBL] [Abstract][Full Text] [Related]
8. Chemical discrimination of arabica and robusta coffees by Fourier transform Raman spectroscopy. Rubayiza AB; Meurens M J Agric Food Chem; 2005 Jun; 53(12):4654-9. PubMed ID: 15941296 [TBL] [Abstract][Full Text] [Related]
9. Furan levels in coffee as influenced by species, roast degree, and brewing procedures. Arisseto AP; Vicente E; Ueno MS; Tfouni SA; Toledo MC J Agric Food Chem; 2011 Apr; 59(7):3118-24. PubMed ID: 21388135 [TBL] [Abstract][Full Text] [Related]
10. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees. Craig AP; Franca AS; Oliveira LS; Irudayaraj J; Ileleji K Talanta; 2015 Mar; 134():379-386. PubMed ID: 25618683 [TBL] [Abstract][Full Text] [Related]
11. Discrimination of green arabica and Robusta coffee beans by Raman spectroscopy. Keidel A; von Stetten D; Rodrigues C; Máguas C; Hildebrandt P J Agric Food Chem; 2010 Nov; 58(21):11187-92. PubMed ID: 20942389 [TBL] [Abstract][Full Text] [Related]
12. Discrimination between washed Arabica, natural Arabica and Robusta coffees by using near infrared spectroscopy, electronic nose and electronic tongue analysis. Buratti S; Sinelli N; Bertone E; Venturello A; Casiraghi E; Geobaldo F J Sci Food Agric; 2015 Aug; 95(11):2192-200. PubMed ID: 25258213 [TBL] [Abstract][Full Text] [Related]
13. Fourier transform infrared spectroscopy for Kona coffee authentication. Wang J; Jun S; Bittenbender HC; Gautz L; Li QX J Food Sci; 2009 Jun; 74(5):C385-91. PubMed ID: 19646032 [TBL] [Abstract][Full Text] [Related]
14. Fourier transform infrared and physicochemical analyses of roasted coffee. Wang N; Lim LT J Agric Food Chem; 2012 May; 60(21):5446-53. PubMed ID: 22563854 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the effectiveness of fatty acids, chlorogenic acids, and elements for the chemometric discrimination of coffee (Coffea arabica L.) varieties and growing origins. Bertrand B; Villarreal D; Laffargue A; Posada H; Lashermes P; Dussert S J Agric Food Chem; 2008 Mar; 56(6):2273-80. PubMed ID: 18303823 [TBL] [Abstract][Full Text] [Related]
16. Effect of zinc and its form of supply on production and quality of coffee beans. Poltronieri Y; Martinez HE; Cecon PR J Sci Food Agric; 2011 Oct; 91(13):2431-6. PubMed ID: 21674505 [TBL] [Abstract][Full Text] [Related]
17. Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Assis C; Pereira HV; Amador VS; Augusti R; de Oliveira LS; Sena MM Food Chem; 2019 May; 281():71-77. PubMed ID: 30658767 [TBL] [Abstract][Full Text] [Related]
18. Arabica and robusta coffees: identification of major polar compounds and quantification of blends by direct-infusion electrospray ionization-mass spectrometry. Garrett R; Vaz BG; Hovell AM; Eberlin MN; Rezende CM J Agric Food Chem; 2012 May; 60(17):4253-8. PubMed ID: 22490013 [TBL] [Abstract][Full Text] [Related]
19. Detection of Corn Adulteration in Brazilian Coffee (Coffea arabica) by Tocopherol Profiling and Near-Infrared (NIR) Spectroscopy. Winkler-Moser JK; Singh M; Rennick KA; Bakota EL; Jham G; Liu SX; Vaughn SF J Agric Food Chem; 2015 Dec; 63(49):10662-8. PubMed ID: 26600312 [TBL] [Abstract][Full Text] [Related]
20. Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Craig AP; Botelho BG; Oliveira LS; Franca AS Food Chem; 2018 Apr; 245():1052-1061. PubMed ID: 29287322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]