These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22378637)

  • 1. Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus.
    Morita H; Kajiura-Kobayashi H; Takagi C; Yamamoto TS; Nonaka S; Ueno N
    Development; 2012 Apr; 139(8):1417-26. PubMed ID: 22378637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos.
    Elul T; Koehl MA; Keller R
    Dev Biol; 1997 Nov; 191(2):243-58. PubMed ID: 9398438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus.
    Inoue Y; Suzuki M; Watanabe T; Yasue N; Tateo I; Adachi T; Ueno N
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1733-1746. PubMed ID: 27193152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct spatiotemporal contribution of morphogenetic events and mechanical tissue coupling during Xenopus neural tube closure.
    Christodoulou N; Skourides PA
    Development; 2022 Jul; 149(13):. PubMed ID: 35662330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic behaviors of the non-neural ectoderm during mammalian cranial neural tube closure.
    Ray HJ; Niswander LA
    Dev Biol; 2016 Aug; 416(2):279-85. PubMed ID: 27343896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nonrandomly oriented cell division in shaping and bending of the neural plate.
    Sausedo RA; Smith JL; Schoenwolf GC
    J Comp Neurol; 1997 May; 381(4):473-88. PubMed ID: 9136804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Embryonic wound healing by apical contraction and ingression in Xenopus laevis.
    Davidson LA; Ezin AM; Keller R
    Cell Motil Cytoskeleton; 2002 Nov; 53(3):163-76. PubMed ID: 12211099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm.
    Poznanski A; Minsuk S; Stathopoulos D; Keller R
    Dev Biol; 1997 Sep; 189(2):256-69. PubMed ID: 9299118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm.
    Essex LJ; Mayor R; Sargent MG
    Dev Dyn; 1993 Oct; 198(2):108-22. PubMed ID: 8305705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of anteroposterior neural pattern in Xenopus by planar signals.
    Doniach T
    Dev Suppl; 1992; ():183-93. PubMed ID: 1363721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal congenital dermal sinus in a chick embryo model. Laboratory investigation.
    van Aalst J; Boselie TF; Beuls EA; Vles JS; van Straaten HW
    J Neurosurg Pediatr; 2009 Jan; 3(1):24-8. PubMed ID: 19119900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hmmr mediates anterior neural tube closure and morphogenesis in the frog Xenopus.
    Prager A; Hagenlocher C; Ott T; Schambony A; Feistel K
    Dev Biol; 2017 Oct; 430(1):188-201. PubMed ID: 28778799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization.
    Suzuki M; Hara Y; Takagi C; Yamamoto TS; Ueno N
    Development; 2010 Jul; 137(14):2329-39. PubMed ID: 20534674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. xGit2 and xRhoGAP 11A regulate convergent extension and tissue separation in Xenopus gastrulation.
    Köster I; Jungwirth MS; Steinbeisser H
    Dev Biol; 2010 Aug; 344(1):26-35. PubMed ID: 20380829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellular basis of the convergence and extension of the Xenopus neural plate.
    Keller R; Shih J; Sater A
    Dev Dyn; 1992 Mar; 193(3):199-217. PubMed ID: 1600240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between gene expression domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural crest of Xenopus.
    Linker C; Bronner-Fraser M; Mayor R
    Dev Biol; 2000 Aug; 224(2):215-25. PubMed ID: 10926761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure.
    Itoh K; Ossipova O; Sokol SY
    J Cell Sci; 2014 Jun; 127(Pt 11):2542-53. PubMed ID: 24681784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of neural crest cell populations: occurrence, distribution and underlying mechanisms.
    Vaglia JL; Hall BK
    Int J Dev Biol; 1999 Mar; 43(2):95-110. PubMed ID: 10235385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphogenetic movements in the neural plate and neural tube: mouse.
    Massarwa R; Ray HJ; Niswander L
    Wiley Interdiscip Rev Dev Biol; 2014; 3(1):59-68. PubMed ID: 24902834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure.
    Suzuki M; Morita H; Ueno N
    Dev Growth Differ; 2012 Apr; 54(3):266-76. PubMed ID: 22524600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.