These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 22378784)

  • 1. Direct observation of translocation in individual DNA polymerase complexes.
    Dahl JM; Mai AH; Cherf GM; Jetha NN; Garalde DR; Marziali A; Akeson M; Wang H; Lieberman KR
    J Biol Chem; 2012 Apr; 287(16):13407-21. PubMed ID: 22378784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    J Biol Chem; 2014 Mar; 289(10):6350-6361. PubMed ID: 24464581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic mechanism of translocation and dNTP binding in individual DNA polymerase complexes.
    Lieberman KR; Dahl JM; Mai AH; Cox A; Akeson M; Wang H
    J Am Chem Soc; 2013 Jun; 135(24):9149-55. PubMed ID: 23705688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic mechanism at the branchpoint between the DNA synthesis and editing pathways in individual DNA polymerase complexes.
    Lieberman KR; Dahl JM; Wang H
    J Am Chem Soc; 2014 May; 136(19):7117-31. PubMed ID: 24761828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes.
    Dahl JM; Wang H; Lázaro JM; Salas M; Lieberman KR
    Biochemistry; 2014 Dec; 53(51):8061-76. PubMed ID: 25478721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of the translocation step measured in individual DNA polymerase complexes.
    Lieberman KR; Dahl JM; Mai AH; Akeson M; Wang H
    J Am Chem Soc; 2012 Nov; 134(45):18816-23. PubMed ID: 23101437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase.
    de Vega M; Blanco L; Salas M
    J Mol Biol; 1999 Sep; 292(1):39-51. PubMed ID: 10493855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processive replication of single DNA molecules in a nanopore catalyzed by phi29 DNA polymerase.
    Lieberman KR; Cherf GM; Doody MJ; Olasagasti F; Kolodji Y; Akeson M
    J Am Chem Soc; 2010 Dec; 132(50):17961-72. PubMed ID: 21121604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of single polymerase-DNA complexes: a mechanical view of DNA unwinding during replication.
    Morin JA; Cao FJ; Valpuesta JM; Carrascosa JL; Salas M; Ibarra B
    Cell Cycle; 2012 Aug; 11(16):2967-8. PubMed ID: 22871727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases.
    de Vega M; Lazaro JM; Salas M; Blanco L
    EMBO J; 1996 Mar; 15(5):1182-92. PubMed ID: 8605889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional importance of bacteriophage phi29 DNA polymerase residue Tyr148 in primer-terminus stabilisation at the 3'-5' exonuclease active site.
    Pérez-Arnaiz P; Lázaro JM; Salas M; de Vega M
    J Mol Biol; 2009 Sep; 391(5):797-807. PubMed ID: 19576228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two positively charged residues of phi29 DNA polymerase, conserved in protein-primed DNA polymerases, are involved in stabilisation of the incoming nucleotide.
    Truniger V; Lázaro JM; Salas M
    J Mol Biol; 2004 Jan; 335(2):481-94. PubMed ID: 14672657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of DNA Polymerase Noncovalent Kinetic Transitions by Divalent Cations.
    Dahl JM; Lieberman KR; Wang H
    J Biol Chem; 2016 Mar; 291(12):6456-70. PubMed ID: 26797125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active DNA unwinding dynamics during processive DNA replication.
    Morin JA; Cao FJ; Lázaro JM; Arias-Gonzalez JR; Valpuesta JM; Carrascosa JL; Salas M; Ibarra B
    Proc Natl Acad Sci U S A; 2012 May; 109(21):8115-20. PubMed ID: 22573817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. phi29 DNA polymerase active site: role of residue Val250 as metal-dNTP complex ligand and in protein-primed initiation.
    Pérez-Arnaiz P; Lázaro JM; Salas M; de Vega M
    J Mol Biol; 2010 Jan; 395(2):223-33. PubMed ID: 19883660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ø29 DNA polymerase residue Lys383, invariant at motif B of DNA-dependent polymerases, is involved in dNTP binding.
    Saturno J; Lázaro JM; Esteban FJ; Blanco L; Salas M
    J Mol Biol; 1997 Jun; 269(3):313-25. PubMed ID: 9199402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases.
    Berman AJ; Kamtekar S; Goodman JL; Lázaro JM; de Vega M; Blanco L; Salas M; Steitz TA
    EMBO J; 2007 Jul; 26(14):3494-505. PubMed ID: 17611604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A positively charged residue of phi29 DNA polymerase, highly conserved in DNA polymerases from families A and B, is involved in binding the incoming nucleotide.
    Truniger V; Lázaro JM; Esteban FJ; Blanco L; Salas M
    Nucleic Acids Res; 2002 Apr; 30(7):1483-92. PubMed ID: 11917008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring and modeling the kinetics of individual DNA-DNA polymerase complexes on a nanopore.
    Wang H; Hurt N; Dunbar WB
    ACS Nano; 2013 May; 7(5):3876-86. PubMed ID: 23565679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the LEXE motif of protein-primed DNA polymerases in the interaction with the incoming nucleotide.
    Santos E; Lázaro JM; Pérez-Arnaiz P; Salas M; de Vega M
    J Biol Chem; 2014 Jan; 289(5):2888-98. PubMed ID: 24324256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.