BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22378950)

  • 1. Iron uptake system mediates nitrate-facilitated cadmium accumulation in tomato (Solanum lycopersicum) plants.
    Luo BF; Du ST; Lu KX; Liu WJ; Lin XY; Jin CW
    J Exp Bot; 2012 May; 63(8):3127-36. PubMed ID: 22378950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pH and nitrogen forms on expression profiles of genes involved in iron homeostasis in tomato.
    Zhao T; Ling HQ
    Plant Cell Environ; 2007 Apr; 30(4):518-27. PubMed ID: 17324237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LeSPL-CNR negatively regulates Cd acquisition through repressing nitrate reductase-mediated nitric oxide production in tomato.
    Chen WW; Jin JF; Lou HQ; Liu L; Kochian LV; Yang JL
    Planta; 2018 Oct; 248(4):893-907. PubMed ID: 29959508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato.
    Du J; Huang Z; Wang B; Sun H; Chen C; Ling HQ; Wu H
    Ann Bot; 2015 Jul; 116(1):23-34. PubMed ID: 26070639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots.
    Graziano M; Lamattina L
    Plant J; 2007 Dec; 52(5):949-60. PubMed ID: 17892445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron-deficiency-induced responses under iron-limited conditions in tomato.
    Jin CW; Du ST; Chen WW; Li GX; Zhang YS; Zheng SJ
    Plant Physiol; 2009 May; 150(1):272-80. PubMed ID: 19329565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants.
    Yuan YX; Zhang J; Wang DW; Ling HQ
    Cell Res; 2005 Aug; 15(8):613-21. PubMed ID: 16117851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots.
    Ling HQ; Bauer P; Bereczky Z; Keller B; Ganal M
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13938-43. PubMed ID: 12370409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression analysis of metallothionein and mineral elements uptake in tomato (Solanum lycopersicum) exposed to cadmium.
    Kısa D; Öztürk L; Tekin Ş
    J Plant Res; 2016 Sep; 129(5):989-995. PubMed ID: 27363704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated CO
    Jayawardena DM; Heckathorn SA; Bista DR; Mishra S; Boldt JK; Krause CR
    Physiol Plant; 2017 Mar; 159(3):354-365. PubMed ID: 27893161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NO
    Nogueirol RC; Monteiro FA; de Souza Junior JC; Azevedo RA
    Environ Sci Pollut Res Int; 2018 May; 25(14):13916-13928. PubMed ID: 29512015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato.
    Bereczky Z; Wang HY; Schubert V; Ganal M; Bauer P
    J Biol Chem; 2003 Jul; 278(27):24697-704. PubMed ID: 12709425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approach to engineer tomato by expression of AtHMA4 to enhance Zn in the aerial parts.
    Kendziorek M; Barabasz A; Rudzka J; Tracz K; Mills RF; Williams LE; Antosiewicz DM
    J Plant Physiol; 2014 Sep; 171(15):1413-22. PubMed ID: 25046762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modifications in endopeptidase and 20S proteasome expression and activities in cadmium treated tomato (Solanum lycopersicum L.) plants.
    Djebali W; Gallusci P; Polge C; Boulila L; Galtier N; Raymond P; Chaibi W; Brouquisse R
    Planta; 2008 Feb; 227(3):625-39. PubMed ID: 17952456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulatory role of nitric oxide in mediating nitrate reductase activity in roots of tomato (Solanum lycocarpum).
    Jin CW; Du ST; Zhang YS; Lin XY; Tang CX
    Ann Bot; 2009 Jul; 104(1):9-17. PubMed ID: 19376780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake.
    Besson-Bard A; Gravot A; Richaud P; Auroy P; Duc C; Gaymard F; Taconnat L; Renou JP; Pugin A; Wendehenne D
    Plant Physiol; 2009 Mar; 149(3):1302-15. PubMed ID: 19168643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulphur deprivation limits Fe-deficiency responses in tomato plants.
    Zuchi S; Cesco S; Varanini Z; Pinton R; Astolfi S
    Planta; 2009 Jun; 230(1):85-94. PubMed ID: 19350269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NO synthase-generated NO acts downstream of auxin in regulating Fe-deficiency-induced root branching that enhances Fe-deficiency tolerance in tomato plants.
    Jin CW; Du ST; Shamsi IH; Luo BF; Lin XY
    J Exp Bot; 2011 Jul; 62(11):3875-84. PubMed ID: 21511908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutathione-mediated regulation of nitric oxide, S-nitrosothiol and redox homeostasis confers cadmium tolerance by inducing transcription factors and stress response genes in tomato.
    Hasan MK; Liu C; Wang F; Ahammed GJ; Zhou J; Xu MX; Yu JQ; Xia XJ
    Chemosphere; 2016 Oct; 161():536-545. PubMed ID: 27472435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato.
    Brumbarova T; Bauer P
    Plant Physiol; 2005 Mar; 137(3):1018-26. PubMed ID: 15695640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.