These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22379679)

  • 1. Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics.
    Lin C; Huang N; Povinelli ML
    Opt Express; 2012 Jan; 20(1):A125-32. PubMed ID: 22379679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells.
    Han SE; Chen G
    Nano Lett; 2010 Nov; 10(11):4692-6. PubMed ID: 20925323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-modified scattering properties of silicon nanostructures for solar energy applications.
    Fofang NT; Luk TS; Okandan M; Nielson GN; Brener I
    Opt Express; 2013 Feb; 21(4):4774-82. PubMed ID: 23482011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics.
    Han SE; Chen G
    Nano Lett; 2010 Mar; 10(3):1012-5. PubMed ID: 20141156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling light trapping in nanostructured solar cells.
    Ferry VE; Polman A; Atwater HA
    ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.
    Lin HY; Kuo Y; Liao CY; Yang CC; Kiang YW
    Opt Express; 2012 Jan; 20(1):A104-18. PubMed ID: 22379680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nearly zero reflectance of nano-pyramids and dual-antireflection coating structure for monocrystalline silicon solar cells.
    Chang HS; Jung HC
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3680-3. PubMed ID: 21776753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells.
    Wang Y; Sun T; Paudel T; Zhang Y; Ren Z; Kempa K
    Nano Lett; 2012 Jan; 12(1):440-5. PubMed ID: 22185407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light trapping by backside diffraction gratings in silicon solar cells revisited.
    Wellenzohn M; Hainberger R
    Opt Express; 2012 Jan; 20(1):A20-7. PubMed ID: 22379675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rugate filter for light-trapping in solar cells.
    Fahr S; Ulbrich C; Kirchartz T; Rau U; Rockstuhl C; Lederer F
    Opt Express; 2008 Jun; 16(13):9332-43. PubMed ID: 18575496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells.
    Schneider BW; Lal NN; Baker-Finch S; White TP
    Opt Express; 2014 Oct; 22 Suppl 6():A1422-30. PubMed ID: 25607299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Absorption enhancement using photonic crystals for silicon thin film solar cells.
    Park Y; Drouard E; El Daif O; Letartre X; Viktorovitch P; Fave A; Kaminski A; Lemiti M; Seassal C
    Opt Express; 2009 Aug; 17(16):14312-21. PubMed ID: 19654839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings.
    Wang KX; Yu Z; Liu V; Cui Y; Fan S
    Nano Lett; 2012 Mar; 12(3):1616-9. PubMed ID: 22356436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design.
    Kim SK; Day RW; Cahoon JF; Kempa TJ; Song KD; Park HG; Lieber CM
    Nano Lett; 2012 Sep; 12(9):4971-6. PubMed ID: 22889329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanophotonic light trapping in 3-dimensional thin-film silicon architectures.
    Lockau D; Sontheimer T; Becker C; Rudigier-Voigt E; Schmidt F; Rech B
    Opt Express; 2013 Jan; 21 Suppl 1():A42-52. PubMed ID: 23389274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel silicon nanohemisphere-array solar cells with enhanced performance.
    Li Y; Yu H; Li J; Wong SM; Sun XW; Li X; Cheng C; Fan HJ; Wang J; Singh N; Lo PG; Kwong DL
    Small; 2011 Nov; 7(22):3138-43. PubMed ID: 21898793
    [No Abstract]   [Full Text] [Related]  

  • 19. Light trapping in silicon nanowire solar cells.
    Garnett E; Yang P
    Nano Lett; 2010 Mar; 10(3):1082-7. PubMed ID: 20108969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of black silicon surfaces on the performance of back-contacted back silicon heterojunction solar cells.
    Ziegler J; Haschke J; Käsebier T; Korte L; Sprafke AN; Wehrspohn RB
    Opt Express; 2014 Oct; 22 Suppl 6():A1469-76. PubMed ID: 25607304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.