These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 22379680)

  • 1. Surface plasmon effects in the absorption enhancements of amorphous silicon solar cells with periodical metal nanowall and nanopillar structures.
    Lin HY; Kuo Y; Liao CY; Yang CC; Kiang YW
    Opt Express; 2012 Jan; 20(1):A104-18. PubMed ID: 22379680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.
    Lee S; In S; Mason DR; Park N
    Opt Express; 2013 Feb; 21(4):4055-60. PubMed ID: 23481940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.
    Le KQ; Abass A; Maes B; Bienstman P; Alù A
    Opt Express; 2012 Jan; 20(1):A39-50. PubMed ID: 22379677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the light trapping induced by surface plasmons and antireflection film in crystalline silicon solar cells.
    Xu R; Wang X; Song L; Liu W; Ji A; Yang F; Li J
    Opt Express; 2012 Feb; 20(5):5061-8. PubMed ID: 22418311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings.
    Lee YC; Huang CF; Chang JY; Wu ML
    Opt Express; 2008 May; 16(11):7969-75. PubMed ID: 18545506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles.
    Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL
    Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells.
    Wang Y; Sun T; Paudel T; Zhang Y; Ren Z; Kempa K
    Nano Lett; 2012 Jan; 12(1):440-5. PubMed ID: 22185407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An optimized surface plasmon photovoltaic structure using energy transfer between discrete nano-particles.
    Lin A; Fu SM; Chung YK; Lai SY; Tseng CW
    Opt Express; 2013 Jan; 21 Suppl 1():A131-45. PubMed ID: 23389264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling light trapping in nanostructured solar cells.
    Ferry VE; Polman A; Atwater HA
    ACS Nano; 2011 Dec; 5(12):10055-64. PubMed ID: 22082201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission line equivalent circuit model applied to a plasmonic grating nanosurface for light trapping.
    Polemi A; Shuford KL
    Opt Express; 2012 Jan; 20(1):A141-56. PubMed ID: 22379681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial distribution of absorption in plasmonic thin film solar cells.
    Chao CC; Wang CM; Chang JY
    Opt Express; 2010 May; 18(11):11763-71. PubMed ID: 20589037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absorption enhancement using photonic crystals for silicon thin film solar cells.
    Park Y; Drouard E; El Daif O; Letartre X; Viktorovitch P; Fave A; Kaminski A; Lemiti M; Seassal C
    Opt Express; 2009 Aug; 17(16):14312-21. PubMed ID: 19654839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive study for the plasmonic thin-film solar cell with periodic structure.
    Sha WE; Choy WC; Chew WC
    Opt Express; 2010 Mar; 18(6):5993-6007. PubMed ID: 20389619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry.
    Sedoglavich N; Sharpe JC; Künnemeyer R; Rubanov S
    Opt Express; 2008 Apr; 16(8):5832-7. PubMed ID: 18542694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes.
    Mahpeykar SM; Xiong Q; Wang X
    Opt Express; 2014 Oct; 22 Suppl 6():A1576-88. PubMed ID: 25607315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband light absorption enhancement in polymer photovoltaics using metal nanowall gratings as transparent electrodes.
    Ye Z; Chaudhary S; Kuang P; Ho KM
    Opt Express; 2012 May; 20(11):12213-21. PubMed ID: 22714211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of surface plasmon cross-talk on optical properties of closely packed nano-hole arrays.
    Vasefi F; Najiminaini M; Kaminska B; Carson JJ
    Opt Express; 2011 Dec; 19(25):25773-9. PubMed ID: 22273969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.