These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 22379797)
1. [Metabolic engineering strategies for carboxylic acids production by Saccharomyces cerevisiae---a review]. Xu G; Liu L; Chen J Wei Sheng Wu Xue Bao; 2011 Dec; 51(12):1571-7. PubMed ID: 22379797 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges. Abbott DA; Zelle RM; Pronk JT; van Maris AJ FEMS Yeast Res; 2009 Dec; 9(8):1123-36. PubMed ID: 19566685 [TBL] [Abstract][Full Text] [Related]
3. Regulation of thiamine synthesis in Saccharomyces cerevisiae for improved pyruvate production. Xu G; Hua Q; Duan N; Liu L; Chen J Yeast; 2012 Jun; 29(6):209-17. PubMed ID: 22674684 [TBL] [Abstract][Full Text] [Related]
4. Metabolic engineering of the 2-ketobutyrate biosynthetic pathway for 1-propanol production in Saccharomyces cerevisiae. Nishimura Y; Matsui T; Ishii J; Kondo A Microb Cell Fact; 2018 Mar; 17(1):38. PubMed ID: 29523149 [TBL] [Abstract][Full Text] [Related]
5. Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock? Sandström AG; Almqvist H; Portugal-Nunes D; Neves D; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2014 Sep; 98(17):7299-318. PubMed ID: 24970456 [TBL] [Abstract][Full Text] [Related]
6. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production]. Yang F; Cao M; Jin Y; Yang X; Tian S Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890 [TBL] [Abstract][Full Text] [Related]
7. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae]. Shen Y; Wang Y; Bao XM; Qu YB Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099 [TBL] [Abstract][Full Text] [Related]
8. Repression of mitochondrial metabolism for cytosolic pyruvate-derived chemical production in Saccharomyces cerevisiae. Morita K; Matsuda F; Okamoto K; Ishii J; Kondo A; Shimizu H Microb Cell Fact; 2019 Oct; 18(1):177. PubMed ID: 31615527 [TBL] [Abstract][Full Text] [Related]
9. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Borodina I; Nielsen J Biotechnol J; 2014 May; 9(5):609-20. PubMed ID: 24677744 [TBL] [Abstract][Full Text] [Related]
10. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509 [TBL] [Abstract][Full Text] [Related]
11. [Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose--a review]. Li H; Zhang X; Shen Y; Dong Y; Bao X Sheng Wu Gong Cheng Xue Bao; 2009 Sep; 25(9):1321-8. PubMed ID: 19938474 [TBL] [Abstract][Full Text] [Related]
12. The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Makuc J; Paiva S; Schauen M; Krämer R; André B; Casal M; Leão C; Boles E Yeast; 2001 Sep; 18(12):1131-43. PubMed ID: 11536335 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Yu KO; Jung J; Kim SW; Park CH; Han SO Biotechnol Bioeng; 2012 Jan; 109(1):110-5. PubMed ID: 21858787 [TBL] [Abstract][Full Text] [Related]
14. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Almeida JR; Runquist D; Sànchez i Nogué V; Lidén G; Gorwa-Grauslund MF Biotechnol J; 2011 Mar; 6(3):286-99. PubMed ID: 21305697 [TBL] [Abstract][Full Text] [Related]
15. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae. Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105 [TBL] [Abstract][Full Text] [Related]
16. Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. de Kok S; Kozak BU; Pronk JT; van Maris AJ FEMS Yeast Res; 2012 Jun; 12(4):387-97. PubMed ID: 22404754 [TBL] [Abstract][Full Text] [Related]
17. Development of a glutathione production process from proteinaceous biomass resources using protease-displaying Saccharomyces cerevisiae. Hara KY; Kim S; Yoshida H; Kiriyama K; Kondo T; Okai N; Ogino C; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2012 Feb; 93(4):1495-502. PubMed ID: 22075633 [TBL] [Abstract][Full Text] [Related]
18. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534 [TBL] [Abstract][Full Text] [Related]
19. Reduction of glycerol production to improve ethanol yield in an engineered Saccharomyces cerevisiae using glycerol as a substrate. Yu KO; Kim SW; Han SO J Biotechnol; 2010 Oct; 150(2):209-14. PubMed ID: 20854852 [TBL] [Abstract][Full Text] [Related]
20. Effect of FPS1 deletion on the fermentation properties of Saccharomyces cerevisiae. Zhang A; Kong Q; Cao L; Chen X Lett Appl Microbiol; 2007 Feb; 44(2):212-7. PubMed ID: 17257263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]