BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2237986)

  • 41. Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs.
    Guérineau N; Corcuff JB; Tabarin A; Mollard P
    Endocrinology; 1991 Jul; 129(1):409-20. PubMed ID: 1647305
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium concentration in rat liver mitochondria during anoxic incubation.
    Chang YJ; Chang KJ
    J Formos Med Assoc; 2002 Feb; 101(2):136-43. PubMed ID: 12099205
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Axon conduction and survival in CNS white matter during energy deprivation: a developmental study.
    Fern R; Davis P; Waxman SG; Ransom BR
    J Neurophysiol; 1998 Jan; 79(1):95-105. PubMed ID: 9425180
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels.
    Taglialatela M; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):385-92. PubMed ID: 2169581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms of intracellular calcium accumulation in the CA1 region of rat hippocampus during anoxia in vitro.
    Lipton P; Lobner D
    Stroke; 1990 Nov; 21(11 Suppl):III60-4. PubMed ID: 2146781
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anoxia induces Ca2+ influx and loss of cell membrane integrity in rat extensor digitorum longus muscle.
    Fredsted A; Mikkelsen UR; Gissel H; Clausen T
    Exp Physiol; 2005 Sep; 90(5):703-14. PubMed ID: 15908508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microcirculatory actions and uses of naturally-occurring (magnesium) and novel synthetic calcium channel blockers.
    Altura BM; Altura BT
    Microcirc Endothelium Lymphatics; 1984 Apr; 1(2):185-220. PubMed ID: 6400430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular dissection of the myelinated axon.
    Waxman SG; Ritchie JM
    Ann Neurol; 1993 Feb; 33(2):121-36. PubMed ID: 7679565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protection of ischemic rat spinal cord white matter: Dual action of KB-R7943 on Na+/Ca2+ exchange and L-type Ca2+ channels.
    Ouardouz M; Zamponi GW; Barr W; Kiedrowski L; Stys PK
    Neuropharmacology; 2005 Mar; 48(4):566-75. PubMed ID: 15755484
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Potassium depolarization elevates cytosolic free calcium concentration in rat anterior pituitary cells through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels.
    Meier K; Knepel W; Schöfl C
    Endocrinology; 1988 Jun; 122(6):2764-70. PubMed ID: 2453348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elemental composition and water content of rat optic nerve myelinated axons and glial cells: effects of in vitro anoxia and reoxygenation.
    LoPachin RM; Stys PK
    J Neurosci; 1995 Oct; 15(10):6735-46. PubMed ID: 7472432
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels.
    Van Goor F; Krsmanovic LZ; Catt KJ; Stojilkovic SS
    Mol Endocrinol; 1999 Apr; 13(4):587-603. PubMed ID: 10194765
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reverse operation of the Na(+)-Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian CNS white matter.
    Stys PK; Waxman SG; Ransom BR
    Ann N Y Acad Sci; 1991; 639():328-32. PubMed ID: 1785859
    [No Abstract]   [Full Text] [Related]  

  • 54. Contribution to ischemic injury of rat optic nerves by intracellular sodium overload.
    Dong CJ; Hare WA
    Doc Ophthalmol; 2005 Jan; 110(1):15-23. PubMed ID: 16249954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuroprotective effects of increased extracellular Ca(2+) during aglycemia in white matter.
    Brown AM; Ransom BR
    J Neurophysiol; 2002 Sep; 88(3):1302-7. PubMed ID: 12205151
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurophysiologic responses of peripheral nerve to repeated episodes of anoxia.
    Stecker M; Wolfe J; Stevenson M
    Clin Neurophysiol; 2013 Apr; 124(4):792-800. PubMed ID: 23084661
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Resistance to anoxic injury in the dorsal columns of adult rat spinal cord following demyelination.
    Imaizumi T; Kocsis JD; Waxman SG
    Brain Res; 1998 Jan; 779(1-2):292-6. PubMed ID: 9473700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calcium-shifts in anoxic cardiac myocytes. A cytochemical study.
    Borgers M; Piper HM
    J Mol Cell Cardiol; 1986 Apr; 18(4):439-48. PubMed ID: 3712452
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ionic alterations during anoxia in mammalian white matter.
    Ransom B; Walz W; Carlini C; Davis P
    Acta Physiol Scand Suppl; 1989; 582():56. PubMed ID: 2816447
    [No Abstract]   [Full Text] [Related]  

  • 60. Na(+)-Ca2+ exchange in anoxic/ischemic injury of CNS myelinated axons.
    Stys PK; Steffensen I
    Ann N Y Acad Sci; 1996 Apr; 779():366-78. PubMed ID: 8659849
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.