These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 22380021)

  • 41. The story of a monodisperse gold nanoparticle: Au25L18.
    Parker JF; Fields-Zinna CA; Murray RW
    Acc Chem Res; 2010 Sep; 43(9):1289-96. PubMed ID: 20597498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis.
    Hu X; Xiao Z; Wang W; Bu L; An Z; Liu S; Pao CW; Zhan C; Hu Z; Yang Z; Wang Y; Huang X
    J Am Chem Soc; 2023 Jul; 145(28):15109-15117. PubMed ID: 37289521
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ordered macroporous bimetallic nanostructures: design, characterization, and applications.
    Lu L; Eychmüller A
    Acc Chem Res; 2008 Feb; 41(2):244-53. PubMed ID: 18217722
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ordered PtFeIr Intermetallic Nanowires Prepared through a Silica-Protection Strategy for the Oxygen Reduction Reaction.
    Yang Z; Yang H; Shang L; Zhang T
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202113278. PubMed ID: 34890098
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles.
    Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P
    ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficiency enhancement of methanol/ethanol oxidation reactions on Pt nanoparticles prepared using a new surfactant, 1,1-dimethyl heptanethiol.
    Şen F; Şen S; Gökağaç G
    Phys Chem Chem Phys; 2011 Jan; 13(4):1676-84. PubMed ID: 21125095
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of FePt nanoparticles having high coercivity.
    Rutledge RD; Morris WH; Wellons MS; Gai Z; Shen J; Bentley J; Wittig JE; Lukehart CM
    J Am Chem Soc; 2006 Nov; 128(44):14210-1. PubMed ID: 17076466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Trimetallic Synergy in Intermetallic PtSnBi Nanoplates Boosts Formic Acid Oxidation.
    Luo S; Chen W; Cheng Y; Song X; Wu Q; Li L; Wu X; Wu T; Li M; Yang Q; Deng K; Quan Z
    Adv Mater; 2019 Oct; 31(40):e1903683. PubMed ID: 31423678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modification of Au nanoparticles dispersed on carbon support using spontaneous deposition of Pt toward formic acid oxidation.
    Kim S; Jung C; Kim J; Rhee CK; Choi SM; Lim TH
    Langmuir; 2010 Mar; 26(6):4497-505. PubMed ID: 20092345
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.
    Zhou WP; Lewera A; Larsen R; Masel RI; Bagus PS; Wieckowski A
    J Phys Chem B; 2006 Jul; 110(27):13393-8. PubMed ID: 16821860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.
    Sun D; Mazumder V; Metin Ö; Sun S
    ACS Nano; 2011 Aug; 5(8):6458-64. PubMed ID: 21766875
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchical nanoporous PtFe alloy with multimodal size distributions and its catalytic performance toward methanol electrooxidation.
    Xu C; Li Q; Liu Y; Wang J; Geng H
    Langmuir; 2012 Jan; 28(3):1886-92. PubMed ID: 22195753
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Self-assembled FePt nanocrystals with large coercivity: reduction of the fcc-to-L1(0) ordering temperature.
    Varanda LC; Jafelicci M
    J Am Chem Soc; 2006 Aug; 128(34):11062-6. PubMed ID: 16925422
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction.
    Li X; Liu J; He W; Huang Q; Yang H
    J Colloid Interface Sci; 2010 Apr; 344(1):132-6. PubMed ID: 20060983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stabilization of gold nanoparticle films on glass by thermal embedding.
    Karakouz T; Maoz BM; Lando G; Vaskevich A; Rubinstein I
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):978-87. PubMed ID: 21388167
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles.
    Sánchez-Sánchez CM; Solla-Gullón J; Vidal-Iglesias FJ; Aldaz A; Montiel V; Herrero E
    J Am Chem Soc; 2010 Apr; 132(16):5622-4. PubMed ID: 20359217
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surprisingly strong effect of stabilizer on the properties of Au nanoparticles and Pt^Au nanostructures in electrocatalysis.
    Zhang GR; Xu BQ
    Nanoscale; 2010 Dec; 2(12):2798-804. PubMed ID: 20938521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Platinum-monolayer shell on AuNi(0.5)Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction.
    Gong K; Su D; Adzic RR
    J Am Chem Soc; 2010 Oct; 132(41):14364-6. PubMed ID: 20873798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.