These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 22380029)
1. Reduced density matrix hybrid approach: application to electronic energy transfer. Berkelbach TC; Markland TE; Reichman DR J Chem Phys; 2012 Feb; 136(8):084104. PubMed ID: 22380029 [TBL] [Abstract][Full Text] [Related]
2. Reduced density matrix hybrid approach: an efficient and accurate method for adiabatic and non-adiabatic quantum dynamics. Berkelbach TC; Reichman DR; Markland TE J Chem Phys; 2012 Jan; 136(3):034113. PubMed ID: 22280750 [TBL] [Abstract][Full Text] [Related]
3. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations. Kelly A; Brackbill N; Markland TE J Chem Phys; 2015 Mar; 142(9):094110. PubMed ID: 25747064 [TBL] [Abstract][Full Text] [Related]
4. Iterative linearized density matrix propagation for modeling coherent excitation energy transfer in photosynthetic light harvesting. Huo P; Coker DF J Chem Phys; 2010 Nov; 133(18):184108. PubMed ID: 21073214 [TBL] [Abstract][Full Text] [Related]
5. Simulating energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified generalized quantum master equation. Mulvihill E; Lenn KM; Gao X; Schubert A; Dunietz BD; Geva E J Chem Phys; 2021 May; 154(20):204109. PubMed ID: 34241158 [TBL] [Abstract][Full Text] [Related]
6. Communication: Exciton-phonon information flow in the energy transfer process of photosynthetic complexes. Rebentrost P; Aspuru-Guzik A J Chem Phys; 2011 Mar; 134(10):101103. PubMed ID: 21405149 [TBL] [Abstract][Full Text] [Related]
7. All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex. Kim HW; Kelly A; Park JW; Rhee YM J Am Chem Soc; 2012 Jul; 134(28):11640-51. PubMed ID: 22708971 [TBL] [Abstract][Full Text] [Related]
8. Modified scaled hierarchical equation of motion approach for the study of quantum coherence in photosynthetic complexes. Zhu J; Kais S; Rebentrost P; Aspuru-Guzik A J Phys Chem B; 2011 Feb; 115(6):1531-7. PubMed ID: 21268616 [TBL] [Abstract][Full Text] [Related]
9. Excitation energy transfer in a non-markovian dynamical disordered environment: localization, narrowing, and transfer efficiency. Chen X; Silbey RJ J Phys Chem B; 2011 May; 115(18):5499-509. PubMed ID: 21384851 [TBL] [Abstract][Full Text] [Related]
10. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397 [TBL] [Abstract][Full Text] [Related]
11. Non-Markovian quantum jumps in excitonic energy transfer. Rebentrost P; Chakraborty R; Aspuru-Guzik A J Chem Phys; 2009 Nov; 131(18):184102. PubMed ID: 19916593 [TBL] [Abstract][Full Text] [Related]
12. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes. Ishizaki A; Fleming GR J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648 [TBL] [Abstract][Full Text] [Related]
13. Communication: Partial linearized density matrix dynamics for dissipative, non-adiabatic quantum evolution. Huo P; Coker DF J Chem Phys; 2011 Nov; 135(20):201101. PubMed ID: 22128918 [TBL] [Abstract][Full Text] [Related]
14. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Glover WJ; Larsen RE; Schwartz BJ J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282 [TBL] [Abstract][Full Text] [Related]
15. Role of quantum coherence and environmental fluctuations in chromophoric energy transport. Rebentrost P; Mohseni M; Aspuru-Guzik A J Phys Chem B; 2009 Jul; 113(29):9942-7. PubMed ID: 19603843 [TBL] [Abstract][Full Text] [Related]
16. Optimization of exciton currents in photosynthetic systems. Guan C; Wu N; Zhao Y J Chem Phys; 2013 Mar; 138(11):115102. PubMed ID: 23534666 [TBL] [Abstract][Full Text] [Related]
17. Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics. Pfalzgraff WC; Montoya-Castillo A; Kelly A; Markland TE J Chem Phys; 2019 Jun; 150(24):244109. PubMed ID: 31255061 [TBL] [Abstract][Full Text] [Related]
18. Environment-assisted quantum walks in photosynthetic energy transfer. Mohseni M; Rebentrost P; Lloyd S; Aspuru-Guzik A J Chem Phys; 2008 Nov; 129(17):174106. PubMed ID: 19045332 [TBL] [Abstract][Full Text] [Related]
19. A resonance mechanism of efficient energy transfer mediated by Fenna-Matthews-Olson complex. Alicki R; Miklaszewski W J Chem Phys; 2012 Apr; 136(13):134103. PubMed ID: 22482536 [TBL] [Abstract][Full Text] [Related]
20. Extending the applicability of Redfield theories into highly non-Markovian regimes. Montoya-Castillo A; Berkelbach TC; Reichman DR J Chem Phys; 2015 Nov; 143(19):194108. PubMed ID: 26590528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]