These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 22380080)

  • 1. Measurement of probe displacement to the thermal resolution limit in photonic force microscopy using a miniature quadrant photodetector.
    Pal SB; Haldar A; Roy B; Banerjee A
    Rev Sci Instrum; 2012 Feb; 83(2):023108. PubMed ID: 22380080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Back-focal-plane position detection with extended linear range for photonic force microscopy.
    Martínez IA; Petrov D
    Appl Opt; 2012 Sep; 51(25):5973-7. PubMed ID: 22945141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope.
    Perrone S; Volpe G; Petrov D
    Rev Sci Instrum; 2008 Oct; 79(10):106101. PubMed ID: 19044745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light.
    Pralle A; Prummer M; Florin EL; Stelzer EH; Hörber JK
    Microsc Res Tech; 1999 Mar; 44(5):378-86. PubMed ID: 10090214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.
    Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O
    Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude.
    Lindballe TB; Kristensen MV; Berg-Sørensen K; Keiding SR; Stapelfeldt H
    Opt Express; 2013 Jan; 21(2):1986-96. PubMed ID: 23389179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry.
    Roy B; Pal SB; Haldar A; Gupta RK; Ghosh N; Banerjee A
    Opt Express; 2012 Apr; 20(8):8317-28. PubMed ID: 22513543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single ion as a nanoscopic probe of an optical field.
    Guthöhrlein GR; Keller M; Hayasaka K; Lange W; Walther H
    Nature; 2001 Nov; 414(6859):49-51. PubMed ID: 11689937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High speed two-dimensional optical beam position detector.
    Rutten PE
    Rev Sci Instrum; 2011 Jul; 82(7):073705. PubMed ID: 21806187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A surface plasmon resonance probe without optical fibers as a portable sensing device.
    Akimoto T; Wada S; Karube I
    Anal Chim Acta; 2008 Mar; 610(1):119-24. PubMed ID: 18267148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdisplacement sensor using an optically trapped microprobe based on the interference scale.
    Michihata M; Hayashi T; Nakai D; Takaya Y
    Rev Sci Instrum; 2010 Jan; 81(1):015107. PubMed ID: 20113129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the force constant of a single-beam gradient trap by measurement of backscattered light.
    Friese ME; Rubinsztein-Dunlop H; Heckenberg NR; Dearden EW
    Appl Opt; 1996 Dec; 35(36):7112-6. PubMed ID: 21151316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal lens detection device.
    Mawatari K; Ohashi T; Ebata T; Tokeshi M; Kitamori T
    Lab Chip; 2011 Sep; 11(17):2990-3. PubMed ID: 21738939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time particle tracking at 10,000 fps using optical fiber illumination.
    Otto O; Czerwinski F; Gornall JL; Stober G; Oddershede LB; Seidel R; Keyser UF
    Opt Express; 2010 Oct; 18(22):22722-33. PubMed ID: 21164611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anti-drift and auto-alignment mechanism for an astigmatic atomic force microscope system based on a digital versatile disk optical head.
    Hwu ET; Illers H; Wang WM; Hwang IS; Jusko L; Danzebrink HU
    Rev Sci Instrum; 2012 Jan; 83(1):013703. PubMed ID: 22299958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Force detection in optical tweezers using backscattered light.
    Huisstede J; van der Werf K; Bennink M; Subramaniam V
    Opt Express; 2005 Feb; 13(4):1113-23. PubMed ID: 19494979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of dual-probe atomic force microscopy system using optical beam deflection sensors with obliquely incident laser beams.
    Tsunemi E; Kobayashi K; Matsushige K; Yamada H
    Rev Sci Instrum; 2011 Mar; 82(3):033708. PubMed ID: 21456752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high frequency sensor for optical beam deflection atomic force microscopy.
    Enning R; Ziegler D; Nievergelt A; Friedlos R; Venkataramani K; Stemmer A
    Rev Sci Instrum; 2011 Apr; 82(4):043705. PubMed ID: 21529011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-mode fiber probe for holographic micromanipulation and microscopy.
    Bianchi S; Di Leonardo R
    Lab Chip; 2012 Feb; 12(3):635-9. PubMed ID: 22170301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.