BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22380117)

  • 1. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.
    Wingert MC; Chen ZC; Kwon S; Xiang J; Chen R
    Rev Sci Instrum; 2012 Feb; 83(2):024901. PubMed ID: 22380117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of a nanostructure thermal property measurement platform.
    Harris CT; Martinez JA; Shaner EA; Huang JY; Swartzentruber BS; Sullivan JP; Chen G
    Nanotechnology; 2011 Jul; 22(27):275308. PubMed ID: 21602618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reexamination of thermal transport measurements of a low-thermal conductance nanowire with a suspended micro-device.
    Weathers A; Bi K; Pettes MT; Shi L
    Rev Sci Instrum; 2013 Aug; 84(8):084903. PubMed ID: 24007092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impacts of doping on thermal and thermoelectric properties of nanomaterials.
    Zhang G; Li B
    Nanoscale; 2010 Jul; 2(7):1058-68. PubMed ID: 20648330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive thermal conductivity measurements of suspended membranes (SiN and diamond) using a 3ω-Völklein method.
    Sikora A; Ftouni H; Richard J; Hébert C; Eon D; Omnès F; Bourgeois O
    Rev Sci Instrum; 2012 May; 83(5):054902. PubMed ID: 22667639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A four-probe thermal transport measurement method for nanostructures.
    Kim J; Ou E; Sellan DP; Shi L
    Rev Sci Instrum; 2015 Apr; 86(4):044901. PubMed ID: 25933883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter.
    Bifano MF; Kaul PB; Prakash V
    Nanotechnology; 2010 Jun; 21(23):235704. PubMed ID: 20472943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focused ion beam-assisted manipulation of single and double beta-SiC nanowires and their thermal conductivity measurements by the four-point-probe 3-omega method.
    Lee KM; Choi TY; Lee SK; Poulikakos D
    Nanotechnology; 2010 Mar; 21(12):125301. PubMed ID: 20195013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures.
    Schwamb T; Burg BR; Schirmer NC; Poulikakos D
    Nanotechnology; 2009 Oct; 20(40):405704. PubMed ID: 19738310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal characterization and sensor applications of one-dimensional nanostructures employing microelectromechanical systems.
    Shi L; Yu C; Zhou J
    J Phys Chem B; 2005 Dec; 109(47):22102-11. PubMed ID: 16853876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoengineering heat transfer performance at carbon nanotube interfaces.
    Xu Z; Buehler MJ
    ACS Nano; 2009 Sep; 3(9):2767-75. PubMed ID: 19702296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of sensitivity and noise in the piezoelectric self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit.
    Shin C; Jeon I; Khim ZG; Hong JW; Nam H
    Rev Sci Instrum; 2010 Mar; 81(3):035109. PubMed ID: 20370215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires.
    Roh JW; Hippalgaonkar K; Ham JH; Chen R; Li MZ; Ercius P; Majumdar A; Kim W; Lee W
    ACS Nano; 2011 May; 5(5):3954-60. PubMed ID: 21466197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple differential steady-state method to measure the thermal conductivity of solid bulk materials with high accuracy.
    Kraemer D; Chen G
    Rev Sci Instrum; 2014 Feb; 85(2):025108. PubMed ID: 24593397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: Thermal conductivity measurement of individual poly(ether ketone)/carbon nanotube fibers using a steady-state dc thermal bridge method.
    Moon J; Weaver K; Feng B; Chae HG; Kumar S; Baek JB; Peterson GP
    Rev Sci Instrum; 2012 Jan; 83(1):016103. PubMed ID: 22299999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires.
    Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R
    Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-high resolution steady-state micro-thermometry using a bipolar direct current reversal technique.
    Wu JY; Wu W; Pettes MT
    Rev Sci Instrum; 2016 Sep; 87(9):094901. PubMed ID: 27782596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications.
    Tian J; Xu Z; Shen C; Liu F; Xu N; Gao HJ
    Nanoscale; 2010 Aug; 2(8):1375-89. PubMed ID: 20820721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.