These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 22380375)

  • 21. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of an Yb-169 source optimized for gold nanoparticle-aided radiation therapy.
    Reynoso FJ; Manohar N; Krishnan S; Cho SH
    Med Phys; 2014 Oct; 41(10):101709. PubMed ID: 25281948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 90Y PET-based dosimetry after selective internal radiotherapy treatments.
    D'Arienzo M; Chiaramida P; Chiacchiararelli L; Coniglio A; Cianni R; Salvatori R; Ruzza A; Scopinaro F; Bagni O
    Nucl Med Commun; 2012 Jun; 33(6):633-40. PubMed ID: 22407156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validation of post-treatment PET-based dosimetry software for hepatic radioembolization of Yttrium-90 microspheres.
    Maughan NM; Garcia-Ramirez J; Arpidone M; Swallen A; Laforest R; Goddu SM; Parikh PJ; Zoberi JE
    Med Phys; 2019 May; 46(5):2394-2402. PubMed ID: 30742714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations.
    Pacilio M; Lanconelli N; Lo MS; Betti M; Montani L; Torres AL; Coca PM
    Med Phys; 2009 May; 36(5):1543-52. PubMed ID: 19544770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monte Carlo calculations of electrons impinging on a copper target: A comparison of EGSnrc, Geant4 and MCNP5.
    Archambault JP
    Appl Radiat Isot; 2018 Feb; 132():129-134. PubMed ID: 29220726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A generic high-dose rate (192)Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism.
    Ballester F; Carlsson Tedgren Å; Granero D; Haworth A; Mourtada F; Fonseca GP; Zourari K; Papagiannis P; Rivard MJ; Siebert FA; Sloboda RS; Smith RL; Thomson RM; Verhaegen F; Vijande J; Ma Y; Beaulieu L
    Med Phys; 2015 Jun; 42(6):3048-61. PubMed ID: 26127057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monte Carlo dose calculations of beta-emitting sources for intravascular brachytherapy: a comparison between EGS4, EGSnrc, and MCNP.
    Wang R; Li XA
    Med Phys; 2001 Feb; 28(2):134-41. PubMed ID: 11243335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monte Carlo Simulations Corroborate PET-Measured Discrepancies in Activity Assessments of Commercial
    Auditore L; Pistone D; Italiano A; Amato E; Gnesin S
    J Nucl Med; 2023 Sep; 64(9):1471-1477. PubMed ID: 37442605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O; Li XA
    Med Phys; 2002 May; 29(5):835-47. PubMed ID: 12033580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D inpatient dose reconstruction from the PET-CT imaging of 90Y microspheres for metastatic cancer to the liver: feasibility study.
    Fourkal E; Veltchev I; Lin M; Koren S; Meyer J; Doss M; Yu JQ
    Med Phys; 2013 Aug; 40(8):081702. PubMed ID: 23927299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of voxel size and computation method on Tc-99m MAA SPECT/CT-based dose estimation for Y-90 microsphere therapy.
    Pasciak AS; Erwin WD
    IEEE Trans Med Imaging; 2009 Nov; 28(11):1754-8. PubMed ID: 19884064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PET optimization for improved assessment and accurate quantification of 90Y-microsphere biodistribution after radioembolization.
    Martí-Climent JM; Prieto E; Elosúa C; Rodríguez-Fraile M; Domínguez-Prado I; Vigil C; García-Velloso MJ; Arbizu J; Peñuelas I; Richter JA
    Med Phys; 2014 Sep; 41(9):092503. PubMed ID: 25186412
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hepatic structural dosimetry in (90)Y microsphere treatment: a Monte Carlo modeling approach based on lobular microanatomy.
    Gulec SA; Sztejnberg ML; Siegel JA; Jevremovic T; Stabin M
    J Nucl Med; 2010 Feb; 51(2):301-10. PubMed ID: 20080888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Doppler broadening effect on low-energy photon dose calculations using MCNP5 and PENELOPE.
    Ye SJ; Ove R; Naqvi SA
    Health Phys; 2006 Oct; 91(4):361-6. PubMed ID: 16966879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Energy-loss straggling algorithms for Monte Carlo electron transport.
    Chibani O
    Med Phys; 2002 Oct; 29(10):2374-83. PubMed ID: 12408312
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dose point kernel simulation for monoenergetic electrons and radionuclides using Monte Carlo techniques.
    Wu J; Liu YL; Chang SJ; Chao MM; Tsai SY; Huang DE
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):119-24. PubMed ID: 22923242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.