These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 2238044)

  • 1. Protein kinase recognition sequence motifs.
    Kemp BE; Pearson RB
    Trends Biochem Sci; 1990 Sep; 15(9):342-6. PubMed ID: 2238044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of an oriented peptide library to determine the optimal substrates of protein kinases.
    Songyang Z; Blechner S; Hoagland N; Hoekstra MF; Piwnica-Worms H; Cantley LC
    Curr Biol; 1994 Nov; 4(11):973-82. PubMed ID: 7874496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The substrate specificity of protein kinases which phosphorylate the alpha subunit of eukaryotic initiation factor 2.
    Proud CG; Colthurst DR; Ferrari S; Pinna LA
    Eur J Biochem; 1991 Feb; 195(3):771-9. PubMed ID: 1671834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Identification of Protein Kinase Phosphorylation Site Motifs Using Combinatorial Peptide Libraries.
    Miller CJ; Turk BE
    Methods Mol Biol; 2016; 1360():203-16. PubMed ID: 26501912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of protein kinase substrate recognition at the active site.
    Bradley D; Beltrao P
    PLoS Biol; 2019 Jun; 17(6):e3000341. PubMed ID: 31233486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation by LAMMER protein kinases: determination of a consensus site, identification of in vitro substrates, and implications for substrate preferences.
    Nikolakaki E; Du C; Lai J; Giannakouros T; Cantley L; Rabinow L
    Biochemistry; 2002 Feb; 41(6):2055-66. PubMed ID: 11827553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of electrostatic interactions that determine the phosphorylation site specificity of the cAMP-dependent protein kinase.
    Gibbs CS; Zoller MJ
    Biochemistry; 1991 Jun; 30(22):5329-34. PubMed ID: 2036400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new expression cloning strategy for isolation of substrate-specific kinases by using phosphorylation site-specific antibody.
    Matsuo R; Ochiai W; Nakashima K; Taga T
    J Immunol Methods; 2001 Jan; 247(1-2):141-51. PubMed ID: 11150545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase CK1 is a p53-threonine 18 kinase which requires prior phosphorylation of serine 15.
    Dumaz N; Milne DM; Meek DW
    FEBS Lett; 1999 Dec; 463(3):312-6. PubMed ID: 10606744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of acidic amino acids in peptide substrates of the beta-adrenergic receptor kinase and rhodopsin kinase.
    Onorato JJ; Palczewski K; Regan JW; Caron MG; Lefkowitz RJ; Benovic JL
    Biochemistry; 1991 May; 30(21):5118-25. PubMed ID: 1645191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic phosphopeptides are substrates for casein kinase II.
    Litchfield DW; Arendt A; Lozeman FJ; Krebs EG; Hargrave PA; Palczewski K
    FEBS Lett; 1990 Feb; 261(1):117-20. PubMed ID: 2307228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of specificity in protein phosphorylation.
    Ubersax JA; Ferrell JE
    Nat Rev Mol Cell Biol; 2007 Jul; 8(7):530-41. PubMed ID: 17585314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of kinase target phosphorylation consensus motifs using peptide SPOT arrays.
    Leung GC; Murphy JM; Briant D; Sicheri F
    Methods Mol Biol; 2009; 570():187-95. PubMed ID: 19649593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate.
    Müller J; Ritt DA; Copeland TD; Morrison DK
    EMBO J; 2003 Sep; 22(17):4431-42. PubMed ID: 12941695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using phospho-motif antibodies to determine kinase substrates.
    White CD; Toker A
    Curr Protoc Mol Biol; 2013 Jan; Chapter 18():Unit 18.20.. PubMed ID: 23288461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence of sites on ATP-citrate lyase and phosphatase inhibitor 2 phosphorylated by multifunctional protein kinase (a glycogen synthase kinase 3 like kinase).
    Ramakrishna S; D'Angelo G; Benjamin WB
    Biochemistry; 1990 Aug; 29(33):7617-24. PubMed ID: 2176822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine.
    Hirayama T; Oka A
    Plant Mol Biol; 1992 Nov; 20(4):653-62. PubMed ID: 1450380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate recognition determinants for rhodopsin kinase: studies with synthetic peptides, polyanions, and polycations.
    Palczewski K; Arendt A; McDowell JH; Hargrave PA
    Biochemistry; 1989 Oct; 28(22):8764-70. PubMed ID: 2605220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase kinase and sucrose-phosphate synthase kinase activities in cauliflower florets: Ca2+ dependence and substrate specificities.
    Toroser D; Huber SC
    Arch Biochem Biophys; 1998 Jul; 355(2):291-300. PubMed ID: 9675040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.