BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 22380737)

  • 1. Allosteric tertiary interactions preorganize the c-di-GMP riboswitch and accelerate ligand binding.
    Wood S; Ferré-D'Amaré AR; Rueda D
    ACS Chem Biol; 2012 May; 7(5):920-7. PubMed ID: 22380737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of ligand binding by a c-di-GMP riboswitch.
    Smith KD; Lipchock SV; Ames TD; Wang J; Breaker RR; Strobel SA
    Nat Struct Mol Biol; 2009 Dec; 16(12):1218-23. PubMed ID: 19898477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential analogue binding by two classes of c-di-GMP riboswitches.
    Shanahan CA; Gaffney BL; Jones RA; Strobel SA
    J Am Chem Soc; 2011 Oct; 133(39):15578-92. PubMed ID: 21838307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding.
    Li C; Zhao X; Xie P; Hu J; Bi H
    J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The RNA Domain Vc1 Regulates Downstream Gene Expression in Response to Cyclic Diguanylate in Vibrio cholerae.
    Kariisa AT; Weeks K; Tamayo R
    PLoS One; 2016; 11(2):e0148478. PubMed ID: 26849223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch.
    Kulshina N; Baird NJ; Ferré-D'Amaré AR
    Nat Struct Mol Biol; 2009 Dec; 16(12):1212-7. PubMed ID: 19898478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
    Smith KD; Shanahan CA; Moore EL; Simon AC; Strobel SA
    Proc Natl Acad Sci U S A; 2011 May; 108(19):7757-62. PubMed ID: 21518891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Vc2 Cyclic di-GMP-Dependent Riboswitch of Vibrio cholerae Regulates Expression of an Upstream Putative Small RNA by Controlling RNA Stability.
    Pursley BR; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2019 Nov; 201(21):. PubMed ID: 31405916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches.
    Keller H; Weickhmann AK; Bock T; Wöhnert J
    RNA; 2018 Oct; 24(10):1390-1402. PubMed ID: 30006500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential binding of 2'-biotinylated analogs of c-di-GMP with c-di-GMP riboswitches and binding proteins.
    Luo Y; Zhou J; Watt SK; Lee VT; Dayie TK; Sintim HO
    Mol Biosyst; 2012 Mar; 8(3):772-8. PubMed ID: 22182995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid RNA-ligand interaction analysis through high-information content conformational and stability landscapes.
    Baird NJ; Inglese J; Ferré-D'Amaré AR
    Nat Commun; 2015 Dec; 6():8898. PubMed ID: 26638992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Riboswitches in eubacteria sense the second messenger cyclic di-GMP.
    Sudarsan N; Lee ER; Weinberg Z; Moy RH; Kim JN; Link KH; Breaker RR
    Science; 2008 Jul; 321(5887):411-3. PubMed ID: 18635805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective binding of 2'-F-c-di-GMP to Ct-E88 and Cb-E43, new class I riboswitches from Clostridium tetani and Clostridium botulinum respectively.
    Luo Y; Zhou J; Wang J; Dayie TK; Sintim HO
    Mol Biosyst; 2013 Jun; 9(6):1535-9. PubMed ID: 23559271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic di-GMP Regulates TfoY in Vibrio cholerae To Control Motility by both Transcriptional and Posttranscriptional Mechanisms.
    Pursley BR; Maiden MM; Hsieh ML; Fernandez NL; Severin GB; Waters CM
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of ligand analogues that control c-di-GMP riboswitches.
    Furukawa K; Gu H; Sudarsan N; Hayakawa Y; Hyodo M; Breaker RR
    ACS Chem Biol; 2012 Aug; 7(8):1436-43. PubMed ID: 22646696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of the c-di-GMP riboswitch with its second messenger ligand.
    Smith KD; Strobel SA
    Biochem Soc Trans; 2011 Apr; 39(2):647-51. PubMed ID: 21428955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of c-di-GMP-Responsive Riboswitches.
    Peltier J; Soutourina O
    Methods Mol Biol; 2017; 1657():377-402. PubMed ID: 28889309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and biochemical characterization of linear dinucleotide analogues bound to the c-di-GMP-I aptamer.
    Smith KD; Lipchock SV; Strobel SA
    Biochemistry; 2012 Jan; 51(1):425-32. PubMed ID: 22148472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.