BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22380761)

  • 21. Double spiral microchannel for label-free tumor cell separation and enrichment.
    Sun J; Li M; Liu C; Zhang Y; Liu D; Liu W; Hu G; Jiang X
    Lab Chip; 2012 Oct; 12(20):3952-60. PubMed ID: 22868446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles.
    Xu ZP; Kurniawan ND; Bartlett PF; Lu GQ
    Chemistry; 2007; 13(10):2824-30. PubMed ID: 17186555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antibody-immobilized column for quick cell separation based on cell rolling.
    Mahara A; Yamaoka T
    Biotechnol Prog; 2010; 26(2):441-7. PubMed ID: 19918913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Folate-poly-L-lysine-Gd-DTPA as MR contrast agent for tumor imaging via folate receptor-targeted delivery].
    Yuan Z; Liu SY; Xiao XS; Zhong GR; Jiang QJ
    Zhonghua Yi Xue Za Zhi; 2007 Mar; 87(10):673-8. PubMed ID: 17553304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sheathless inertial cell ordering for extreme throughput flow cytometry.
    Hur SC; Tse HT; Di Carlo D
    Lab Chip; 2010 Feb; 10(3):274-80. PubMed ID: 20090998
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Preparation of a novel targeted MR contrast agent Gd-DTPA-streptavidin and exploration of its reaction conditions].
    Liu X; Xu YK; Huang QL
    Di Yi Jun Yi Da Xue Xue Bao; 2004 Jan; 24(1):15-7. PubMed ID: 14724085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of the contrast agent Magnevist and its transmetalation products in blood plasma by capillary electrophoresis/electrospray ionization time-of-flight mass spectrometry.
    Künnemeyer J; Terborg L; Nowak S; Telgmann L; Tokmak F; Krämer BK; Günsel A; Wiesmüller GA; Waldeck J; Bremer C; Karst U
    Anal Chem; 2009 May; 81(9):3600-7. PubMed ID: 19338293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation.
    Cheung K; Gawad S; Renaud P
    Cytometry A; 2005 Jun; 65(2):124-32. PubMed ID: 15825181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic inertia enhanced phase partitioning for enriching nucleated cell populations in blood.
    Parichehreh V; Medepallai K; Babbarwal K; Sethu P
    Lab Chip; 2013 Mar; 13(5):892-900. PubMed ID: 23307172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for differential diagnosis of nonalcoholic steatohepatitis and fatty liver in rats using magnetic resonance imaging.
    Tsuda N; Okada M; Murakami T
    Invest Radiol; 2007 Apr; 42(4):242-7. PubMed ID: 17351431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.
    Zeming KK; Salafi T; Chen CH; Zhang Y
    Sci Rep; 2016 Mar; 6():22934. PubMed ID: 26961061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analytical solutions and validation of electric field and dielectrophoretic force in a bio-microfluidic channel.
    Nerguizian V; Alazzam A; Roman D; Stiharu I; Burnier M
    Electrophoresis; 2012 Feb; 33(3):426-35. PubMed ID: 22287173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantifying angiogenesis in VEGF-enhanced tissue-engineered bladder constructs by dynamic contrast-enhanced MRI using contrast agents of different molecular weights.
    Cheng HL; Wallis C; Shou Z; Farhat WA
    J Magn Reson Imaging; 2007 Jan; 25(1):137-45. PubMed ID: 17139634
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced microfluidic multi-target separation by positive and negative magnetophoresis.
    Khashan S; Odhah AA; Taha M; Alazzam A; Al-Fandi M
    Sci Rep; 2024 Jun; 14(1):13293. PubMed ID: 38858424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gravitational sedimentation induced blood delamination for continuous plasma separation on a microfluidics chip.
    Zhang XB; Wu ZQ; Wang K; Zhu J; Xu JJ; Xia XH; Chen HY
    Anal Chem; 2012 Apr; 84(8):3780-6. PubMed ID: 22449121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies.
    Braschler T; Demierre N; Nascimento E; Silva T; Oliva AG; Renaud P
    Lab Chip; 2008 Feb; 8(2):280-6. PubMed ID: 18231667
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.