BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22380761)

  • 41. Separation and size distribution of red blood cells of diverse size, shape, and origin by flow/hyperlayer field-flow fractionation.
    Barman BN; Ashwood ER; Giddings JC
    Anal Biochem; 1993 Jul; 212(1):35-42. PubMed ID: 8368513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [The effect of Gd-DTPA on magnetic resonance imaging: a potential blood-brain barrier indicator].
    Hashimoto K; Yamagata S; Minamikawa J; Watanabe Y; Kanesiro M; Kikuchi H
    No To Shinkei; 1988 May; 40(5):461-6. PubMed ID: 3415864
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DC-Dielectrophoretic separation of biological cells by size.
    Kang Y; Li D; Kalams SA; Eid JE
    Biomed Microdevices; 2008 Apr; 10(2):243-9. PubMed ID: 17899384
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.
    Choi S; Park JK
    Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sorting cells by size, shape and deformability.
    Beech JP; Holm SH; Adolfsson K; Tegenfeldt JO
    Lab Chip; 2012 Mar; 12(6):1048-51. PubMed ID: 22327631
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A microfluidic device for separating erythrocytes polluted by lead (II) from a continuous bloodstream flow.
    Wang MW
    Electrophoresis; 2012 Mar; 33(5):780-7. PubMed ID: 22522535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer.
    Liu Y; Chen Z; Liu C; Yu D; Lu Z; Zhang N
    Biomaterials; 2011 Aug; 32(22):5167-76. PubMed ID: 21521627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A case of Budd-Chiari syndrome: Gd-EOB-DTPA-enhanced MR findings.
    Kitajima K; Yoshikawa T; Seo Y; Ohno Y; Yano Y; Miki A; Kanda T; Kanata N; Azuma T; Sugimura K
    Magn Reson Imaging; 2011 May; 29(4):579-83. PubMed ID: 21216550
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis.
    Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T
    Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interdigitated comb-like electrodes for continuous separation of malignant cells from blood using dielectrophoresis.
    Alazzam A; Stiharu I; Bhat R; Meguerditchian AN
    Electrophoresis; 2011 Jun; 32(11):1327-36. PubMed ID: 21500214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue edema does not change gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced T1 relaxation times of viable myocardium.
    Li G; Xiang B; Dai G; Shaw A; Liu H; Yang B; Jackson M; Deslauriers R; Tian G
    J Magn Reson Imaging; 2005 Jun; 21(6):744-51. PubMed ID: 15906335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification.
    Chen X; Cui D; Liu C; Li H; Chen J
    Anal Chim Acta; 2007 Feb; 584(2):237-43. PubMed ID: 17386610
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamic contrast-enhanced magnetic resonance imaging of abdominal solid organ and major vessel: comparison of enhancement effect between Gd-EOB-DTPA and Gd-DTPA.
    Tamada T; Ito K; Sone T; Yamamoto A; Yoshida K; Kakuba K; Tanimoto D; Higashi H; Yamashita T
    J Magn Reson Imaging; 2009 Mar; 29(3):636-40. PubMed ID: 19243060
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lab on a chip for continuous-flow magnetic cell separation.
    Hejazian M; Li W; Nguyen NT
    Lab Chip; 2015 Feb; 15(4):959-70. PubMed ID: 25537573
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration.
    Guzniczak E; Otto O; Whyte G; Chandra T; Robertson NA; Willoughby N; Jimenez M; Bridle H
    Biotechnol Bioeng; 2020 Jul; 117(7):2032-2045. PubMed ID: 32100873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Serially Ordered Magnetization of Nanoclusters via Control of Various Transition Metal Dopants for the Multifractionation of Cells in Microfluidic Magnetophoresis Devices.
    Kang B; Cha B; Kim B; Han S; Shin MK; Jang E; Kim HO; Bae SR; Jeong U; Moon I; Son Hy; Huh YM; Haam S
    Anal Chem; 2016 Jan; 88(2):1078-82. PubMed ID: 26717968
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Two-dimensional flow magnetophoresis of microparticles.
    Kawano M; Watarai H
    Anal Bioanal Chem; 2012 Jul; 403(9):2645-53. PubMed ID: 22618326
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurement of the magnetic susceptibility of subtle paramagnetic solutions using the diamagnetic repulsion of polymer microparticles.
    Jang BH; Kwon S; Kang JH
    Lab Chip; 2019 Jul; 19(14):2356-2361. PubMed ID: 31173624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Resistivity of red blood cells against high-intensity, short-duration electric field pulses induced by chelating agents.
    Mussauer H; Sukhorukov VL; Haase A; Zimmermann U
    J Membr Biol; 1999 Jul; 170(2):121-33. PubMed ID: 10430656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.