These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 22380761)

  • 61. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study.
    Moore LR; Mizutani D; Tanaka T; Buck A; Yazer M; Zborowski M; Chalmers JJ
    Biotechnol Bioeng; 2018 Jun; 115(6):1521-1530. PubMed ID: 29476625
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Separation of leukocytes from blood using spiral channel with trapezoid cross-section.
    Wu L; Guan G; Hou HW; Bhagat AA; Han J
    Anal Chem; 2012 Nov; 84(21):9324-31. PubMed ID: 23025404
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pulsed-field separation of particles in a microfluidic device.
    Regtmeier J; Eichhorn R; Duong TT; Reimann P; Anselmetti D; Ros A
    Eur Phys J E Soft Matter; 2007 Apr; 22(4):335-40. PubMed ID: 17492395
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.
    Liang W; Zhao Y; Liu L; Wang Y; Dong Z; Li WJ; Lee GB; Xiao X; Zhang W
    PLoS One; 2014; 9(6):e90827. PubMed ID: 24608811
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High gradient magnetic separation of erythrocytes.
    Owen CS
    Biophys J; 1978 May; 22(2):171-8. PubMed ID: 656540
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Concentric Magnetic Structures for Magnetophoretic Bead Collection, Cell Trapping and Analysis of Cell Morphological Changes Caused by Local Magnetic Forces.
    Huang CY; Wei ZH
    PLoS One; 2015; 10(8):e0135299. PubMed ID: 26270332
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Determination of magnetic susceptibility of various ion-labeled red blood cells by means of analytical magnetapheresis.
    Bor Fuh C; Su YS; Tsai HY
    J Chromatogr A; 2004 Feb; 1027(1-2):289-96. PubMed ID: 14971514
    [TBL] [Abstract][Full Text] [Related]  

  • 68. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.
    Faraghat SA; Hoettges KF; Steinbach MK; van der Veen DR; Brackenbury WJ; Henslee EA; Labeed FH; Hughes MP
    Proc Natl Acad Sci U S A; 2017 May; 114(18):4591-4596. PubMed ID: 28408395
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Control of magnetophoretic mobility by susceptibility-modified solutions as evaluated by cell tracking velocimetry and continuous magnetic sorting.
    Moore LR; Milliron S; Williams PS; Chalmers JJ; Margel S; Zborowski M
    Anal Chem; 2004 Jul; 76(14):3899-907. PubMed ID: 15253623
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Label-free separation of peripheral blood mononuclear cells from whole blood by gradient acoustic focusing.
    Alsved J; Rezayati Charan M; Ohlsson P; Urbansky A; Augustsson P
    Sci Rep; 2024 Apr; 14(1):8748. PubMed ID: 38627566
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system.
    Watarai H; Namba M
    J Chromatogr A; 2002 Jun; 961(1):3-8. PubMed ID: 12186388
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.
    Murray C; Pao E; Tseng P; Aftab S; Kulkarni R; Rettig M; Di Carlo D
    Small; 2016 Apr; 12(14):1891-9. PubMed ID: 26890496
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydrodynamic instability in a magnetically driven suspension of paramagnetic red blood cells.
    Kashevsky BE; Zholud AM; Kashevsky SB
    Soft Matter; 2015 Sep; 11(33):6547-51. PubMed ID: 26212385
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-Resolution Separation of Nanoparticles Using a Negative Magnetophoretic Microfluidic System.
    Zeng L; Chen X; Zhang R; Hu S; Zhang H; Zhang Y; Yang H
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334669
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review.
    Plouffe BD; Murthy SK; Lewis LH
    Rep Prog Phys; 2015 Jan; 78(1):016601. PubMed ID: 25471081
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Magnetically-controllable zigzag structures as cell microgripper.
    Ger TR; Huang HT; Chen WY; Lai MF
    Lab Chip; 2013 Jun; 13(12):2364-9. PubMed ID: 23645230
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microchannel anechoic corner for size-selective separation and medium exchange via traveling surface acoustic waves.
    Destgeer G; Ha BH; Park J; Jung JH; Alazzam A; Sung HJ
    Anal Chem; 2015 May; 87(9):4627-32. PubMed ID: 25800052
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modeling the efficiency of a magnetic needle for collecting magnetic cells.
    Butler KS; Adolphi NL; Bryant HC; Lovato DM; Larson RS; Flynn ER
    Phys Med Biol; 2014 Jul; 59(13):3319-35. PubMed ID: 24874577
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Label-free concentration of viable neurons, hESCs and cancer cells by means of acoustophoresis.
    Zalis MC; Reyes JF; Augustsson P; Holmqvist S; Roybon L; Laurell T; Deierborg T
    Integr Biol (Camb); 2016 Mar; 8(3):332-40. PubMed ID: 26915333
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Separation and Analysis of Adherent and Non-Adherent Cancer Cells Using a Single-Cell Microarray Chip.
    Yamamura S; Yamada E; Kimura F; Miyajima K; Shigeto H
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29065470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.