These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 22381594)
1. In situ NMR of lithium ion batteries: bulk susceptibility effects and practical considerations. Trease NM; Zhou L; Chang HJ; Zhu BY; Grey CP Solid State Nucl Magn Reson; 2012 Apr; 42():62-70. PubMed ID: 22381594 [TBL] [Abstract][Full Text] [Related]
2. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Blanc F; Leskes M; Grey CP Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242 [TBL] [Abstract][Full Text] [Related]
3. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. Kuhn A; Kunze M; Sreeraj P; Wiemhöfer HD; Thangadurai V; Wilkening M; Heitjans P Solid State Nucl Magn Reson; 2012 Apr; 42():2-8. PubMed ID: 22364761 [TBL] [Abstract][Full Text] [Related]
4. Solid-state NMR in materials for energy storage and conversion. Grey CP; Goward GR Solid State Nucl Magn Reson; 2012 Apr; 42():1. PubMed ID: 22445132 [No Abstract] [Full Text] [Related]
5. Studies of lithium ion dynamics in paramagnetic cathode materials using (6)Li 1D selective inversion methods. Davis LJ; He XJ; Bain AD; Goward GR Solid State Nucl Magn Reson; 2012 Apr; 42():26-32. PubMed ID: 22336040 [TBL] [Abstract][Full Text] [Related]
6. Paramagnetic electrodes and bulk magnetic susceptibility effects in the in situ NMR studies of batteries: application to Li1.08Mn1.92O4 spinels. Zhou L; Leskes M; Ilott AJ; Trease NM; Grey CP J Magn Reson; 2013 Sep; 234():44-57. PubMed ID: 23838525 [TBL] [Abstract][Full Text] [Related]
7. Si/Ge double-layered nanotube array as a lithium ion battery anode. Song T; Cheng H; Choi H; Lee JH; Han H; Lee DH; Yoo DS; Kwon MS; Choi JM; Doo SG; Chang H; Xiao J; Huang Y; Park WI; Chung YC; Kim H; Rogers JA; Paik U ACS Nano; 2012 Jan; 6(1):303-9. PubMed ID: 22142021 [TBL] [Abstract][Full Text] [Related]
8. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
9. Isotropic high field NMR spectra of Li-ion battery materials with anisotropy >1 MHz. Hung I; Zhou L; Pourpoint F; Grey CP; Gan Z J Am Chem Soc; 2012 Feb; 134(4):1898-901. PubMed ID: 22235803 [TBL] [Abstract][Full Text] [Related]
10. Modified coin cells for in situ Raman spectroelectrochemical measurements of Li(x)V2O5 for lithium rechargeable batteries. Burba CM; Frech R Appl Spectrosc; 2006 May; 60(5):490-3. PubMed ID: 16756699 [TBL] [Abstract][Full Text] [Related]
11. Understanding (6)Li MAS NMR spectra of Li(2)MSiO(4) materials (M = Mn, Fe, Zn). Mali G; Rangus M; Sirisopanaporn C; Dominko R Solid State Nucl Magn Reson; 2012 Apr; 42():33-41. PubMed ID: 22033467 [TBL] [Abstract][Full Text] [Related]
12. High-performance lithium battery anodes using silicon nanowires. Chan CK; Peng H; Liu G; McIlwrath K; Zhang XF; Huggins RA; Cui Y Nat Nanotechnol; 2008 Jan; 3(1):31-5. PubMed ID: 18654447 [TBL] [Abstract][Full Text] [Related]
14. Direct detection of discharge products in lithium-oxygen batteries by solid-state NMR spectroscopy. Leskes M; Drewett NE; Hardwick LJ; Bruce PG; Goward GR; Grey CP Angew Chem Int Ed Engl; 2012 Aug; 51(34):8560-3. PubMed ID: 22786802 [TBL] [Abstract][Full Text] [Related]
15. Facile solvothermal synthesis of mesoporous Cu₂SnS₃ spheres and their application in lithium-ion batteries. Qu B; Zhang M; Lei D; Zeng Y; Chen Y; Chen L; Li Q; Wang Y; Wang T Nanoscale; 2011 Sep; 3(9):3646-51. PubMed ID: 21792405 [TBL] [Abstract][Full Text] [Related]
16. High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper. Lahiri I; Oh SW; Hwang JY; Cho S; Sun YK; Banerjee R; Choi W ACS Nano; 2010 Jun; 4(6):3440-6. PubMed ID: 20441185 [TBL] [Abstract][Full Text] [Related]
17. Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR. Dupke S; Langer T; Pöttgen R; Winter M; Eckert H Solid State Nucl Magn Reson; 2012 Apr; 42():17-25. PubMed ID: 21996453 [TBL] [Abstract][Full Text] [Related]
18. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries. Sasidharan M; Nakashima K; Gunawardhana N; Yokoi T; Ito M; Inoue M; Yusa S; Yoshio M; Tatsumi T Nanoscale; 2011 Nov; 3(11):4768-73. PubMed ID: 22002197 [TBL] [Abstract][Full Text] [Related]
19. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Chen W; Zhu Z; Li S; Chen C; Yan L Nanoscale; 2012 Mar; 4(6):2124-9. PubMed ID: 22334350 [TBL] [Abstract][Full Text] [Related]
20. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries. Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]