These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 22382293)

  • 1. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors.
    Tao HC; Gao ZY; Ding H; Xu N; Wu WM
    Bioresour Technol; 2012 May; 111():92-7. PubMed ID: 22382293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor.
    Tao HC; Zhang LJ; Gao ZY; Wu WM
    Bioresour Technol; 2011 Nov; 102(22):10334-9. PubMed ID: 21940162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process.
    Chandrasekara Pillai K; Chung SJ; Moon IS
    Chemosphere; 2008 Nov; 73(9):1505-11. PubMed ID: 18762320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing silver recovery and power generation in bio-electrochemical reactors.
    Ho NAD; Babel S; Sombatmankhong K
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21024-21037. PubMed ID: 28726226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical reclamation of silver from silver-plating wastewater using static cylinder electrodes and a pulsed electric field.
    Su YB; Li QB; Wang YP; Wang HT; Huang JL; Yang X
    J Hazard Mater; 2009 Oct; 170(2-3):1164-72. PubMed ID: 19545945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrochemical technology for recovery of silver from contaminated aqueous solution: a review.
    Ho NAD; Babel S
    Environ Sci Pollut Res Int; 2021 Dec; 28(45):63480-63494. PubMed ID: 32666459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous reduction of low-potential silver(I) dithiosulfate complex in bioelectrochemical systems for recovery of silver and simultaneous electricity production.
    Ho NAD; Babel S
    Environ Technol; 2020 Sep; 41(23):3055-3068. PubMed ID: 30896292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical reduction of different Ag(i)-containing solutions in bioelectrochemical systems for recovery of silver and simultaneous power generation.
    Ho NAD; Babel S
    RSC Adv; 2019 Sep; 9(52):30259-30268. PubMed ID: 35530203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system.
    Mu Y; Radjenovic J; Shen J; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2011 Jan; 45(2):782-8. PubMed ID: 21141818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell.
    Tao HC; Liang M; Li W; Zhang LJ; Ni JR; Wu WM
    J Hazard Mater; 2011 May; 189(1-2):186-92. PubMed ID: 21377788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-electrochemical reactors using AMI-7001S and CMI-7000S membranes as separators for silver recovery and power generation.
    Ho NAD; Babel S; Kurisu F
    Bioresour Technol; 2017 Nov; 244(Pt 1):1006-1014. PubMed ID: 28847106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2011 Jan; 45(2):796-802. PubMed ID: 21142093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of silver from wastewater coupled with power generation using a microbial fuel cell.
    Choi C; Cui Y
    Bioresour Technol; 2012 Mar; 107():522-5. PubMed ID: 22217729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ammonia recycling enables sustainable operation of bioelectrochemical systems.
    Cheng KY; Kaksonen AH; Cord-Ruwisch R
    Bioresour Technol; 2013 Sep; 143():25-31. PubMed ID: 23774293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of silver(I) from aqueous solutions in the absence and presence of copper(II) with a methimazole-based ionic liquid.
    Reyna-González JM; Torriero AA; Siriwardana AI; Burgar IM; Bond AM
    Analyst; 2011 Aug; 136(16):3314-22. PubMed ID: 21727953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical determination of nitrite using silver nanoparticles modified electrode.
    Pal M; Ganesan V
    Analyst; 2010 Oct; 135(10):2711-6. PubMed ID: 20714523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metals removal and recovery in bioelectrochemical systems: A review.
    Nancharaiah YV; Venkata Mohan S; Lens PN
    Bioresour Technol; 2015 Nov; 195():102-14. PubMed ID: 26116446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles.
    Li XG; Ma XL; Sun J; Huang MR
    Langmuir; 2009 Feb; 25(3):1675-84. PubMed ID: 19132885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.