These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 22382412)
1. Novel ultra-cryo milling and co-grinding technique in liquid nitrogen to produce dissolution-enhanced nanoparticles for poorly water-soluble drugs. Sugimoto S; Niwa T; Nakanishi Y; Danjo K Chem Pharm Bull (Tokyo); 2012; 60(3):325-33. PubMed ID: 22382412 [TBL] [Abstract][Full Text] [Related]
2. Development of a novel ultra cryo-milling technique for a poorly water-soluble drug using dry ice beads and liquid nitrogen. Sugimoto S; Niwa T; Nakanishi Y; Danjo K Int J Pharm; 2012 Apr; 426(1-2):162-169. PubMed ID: 22266538 [TBL] [Abstract][Full Text] [Related]
3. Solid state and dissolution rate characterization of co-ground mixtures of nifedipine and hydrophilic carriers. Friedrich H; Nada A; Bodmeier R Drug Dev Ind Pharm; 2005 Sep; 31(8):719-28. PubMed ID: 16221606 [TBL] [Abstract][Full Text] [Related]
4. Preparation of Fine-Drugs Layered Spherical Particles with Good Micromeritic and Dissolution Properties through Ultra Cryo-Milling and Mechanical Powder Processing. Tsuboi D; Kondo K; Niwa T Chem Pharm Bull (Tokyo); 2021; 69(8):747-759. PubMed ID: 34334518 [TBL] [Abstract][Full Text] [Related]
5. One-step preparation of pharmaceutical nanocrystals using ultra cryo-milling technique in liquid nitrogen. Niwa T; Nakanishi Y; Danjo K Eur J Pharm Sci; 2010 Sep; 41(1):78-85. PubMed ID: 20621640 [TBL] [Abstract][Full Text] [Related]
6. Effect of grinding with hydroxypropyl cellulose on the dissolution and particle size of a poorly water-soluble drug. Yamada T; Saito N; Imai T; Otagiri M Chem Pharm Bull (Tokyo); 1999 Sep; 47(9):1311-3. PubMed ID: 10517010 [TBL] [Abstract][Full Text] [Related]
7. Solid state interaction of raloxifene HCl with different hydrophilic carriers during co-grinding and its effect on dissolution rate. Garg A; Singh S; Rao VU; Bindu K; Balasubramaniam J Drug Dev Ind Pharm; 2009 Apr; 35(4):455-70. PubMed ID: 19048425 [TBL] [Abstract][Full Text] [Related]
8. Ultra Cryo-Milling with Liquid Nitrogen and Dry Ice Beads: Characterization of Dry Ice as Milling Beads for Application to Various Drug Compounds. Uemoto Y; Toda S; Adachi A; Kondo K; Niwa T Chem Pharm Bull (Tokyo); 2018; 66(8):794-804. PubMed ID: 30068799 [TBL] [Abstract][Full Text] [Related]
9. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies - Development of particle design method. Niwa T; Miura S; Danjo K Int J Pharm; 2011 Feb; 405(1-2):218-27. PubMed ID: 21167922 [TBL] [Abstract][Full Text] [Related]
10. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Caron V; Tajber L; Corrigan OI; Healy AM Mol Pharm; 2011 Apr; 8(2):532-42. PubMed ID: 21323367 [TBL] [Abstract][Full Text] [Related]
11. Preparation and physicochemical characterization of binary and ternary ground mixtures of carvedilol with PVP and SLS aimed to improve the drug dissolution. Bolourchian N; Talamkhani Z; Nokhodchi A Pharm Dev Technol; 2019 Nov; 24(9):1115-1124. PubMed ID: 31282827 [TBL] [Abstract][Full Text] [Related]
12. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Javadzadeh Y; Jafari-Navimipour B; Nokhodchi A Int J Pharm; 2007 Aug; 341(1-2):26-34. PubMed ID: 17498898 [TBL] [Abstract][Full Text] [Related]
13. In vitro/in vivo evaluation of felodipine micropowders prepared by the wet-milling process combined with different solidification methods. Meng J; Li S; Yao Q; Zhang L; Weng Y; Cai C; Xu H; Tang X Drug Dev Ind Pharm; 2014 Jul; 40(7):929-36. PubMed ID: 23614872 [TBL] [Abstract][Full Text] [Related]
14. Improving the wetting and dissolution of ibuprofen using solventless co-milling. Varghese S; Ghoroi C Int J Pharm; 2017 Nov; 533(1):145-155. PubMed ID: 28951348 [TBL] [Abstract][Full Text] [Related]
15. Dissolution behavior and bioavailability of phenytoin from a ground mixture with microcrystalline cellulose. Yamamoto K; Nakano M; Arita T; Takayama Y; Nakai Y J Pharm Sci; 1976 Oct; 65(10):1484-8. PubMed ID: 978407 [TBL] [Abstract][Full Text] [Related]
16. Development and characterization of an orodispersible film containing drug nanoparticles. Shen BD; Shen CY; Yuan XD; Bai JX; Lv QY; Xu H; Dai L; Yu C; Han J; Yuan HL Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1348-56. PubMed ID: 24103635 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticulation of poorly water soluble drugs using a wet-mill process and physicochemical properties of the nanopowders. Tanaka Y; Inkyo M; Yumoto R; Nagai J; Takano M; Nagata S Chem Pharm Bull (Tokyo); 2009 Oct; 57(10):1050-7. PubMed ID: 19801857 [TBL] [Abstract][Full Text] [Related]
18. Effect of drug-polymer interactions on the aqueous solubility of milled solid dispersions. Al-Obaidi H; Lawrence MJ; Shah S; Moghul H; Al-Saden N; Bari F Int J Pharm; 2013 Mar; 446(1-2):100-5. PubMed ID: 23410988 [TBL] [Abstract][Full Text] [Related]
19. Design of self-dispersible dry nanosuspension through wet milling and spray freeze-drying for poorly water-soluble drugs. Niwa T; Danjo K Eur J Pharm Sci; 2013 Nov; 50(3-4):272-81. PubMed ID: 23907001 [TBL] [Abstract][Full Text] [Related]
20. Glucosamine HCl as a new carrier for improved dissolution behaviour: effect of grinding. Al-Hamidi H; Edwards AA; Mohammad MA; Nokhodchi A Colloids Surf B Biointerfaces; 2010 Nov; 81(1):96-109. PubMed ID: 20674291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]