These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 22382475)
1. Information extraction from narrative data. Hope CJ; Garvin JH; Sauer BC Am J Health Syst Pharm; 2012 Mar; 69(6):455, 460-1. PubMed ID: 22382475 [No Abstract] [Full Text] [Related]
2. A methodology for mining clinical data: experiences from TRANSFoRm project. Danger R; Corrigan D; Soler JK; Kazienko P; Kajdanowicz T; Majeed A; Curcin V Stud Health Technol Inform; 2015; 210():85-9. PubMed ID: 25991107 [TBL] [Abstract][Full Text] [Related]
3. Extraction of Vital Signs from Clinical Notes. Patterson OV; Jones M; Yao Y; Viernes B; Alba PR; Iwashyna TJ; DuVall SL Stud Health Technol Inform; 2015; 216():1035. PubMed ID: 26262334 [TBL] [Abstract][Full Text] [Related]
4. Extraction Of Adverse Events From Clinical Documents To Support Decision Making Using Semantic Preprocessing. Gaebel J; Kolter T; Arlt F; Denecke K Stud Health Technol Inform; 2015; 216():1030. PubMed ID: 26262330 [TBL] [Abstract][Full Text] [Related]
5. University of California, Irvine-Pathology Extraction Pipeline: the pathology extraction pipeline for information extraction from pathology reports. Ashish N; Dahm L; Boicey C Health Informatics J; 2014 Dec; 20(4):288-305. PubMed ID: 25155030 [TBL] [Abstract][Full Text] [Related]
6. Similarity retrieval of cardiac reports. Syeda-Mahmood T Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1135-41. PubMed ID: 21096324 [TBL] [Abstract][Full Text] [Related]
7. Extraction of adverse drug effects from clinical records. Aramaki E; Miura Y; Tonoike M; Ohkuma T; Masuichi H; Waki K; Ohe K Stud Health Technol Inform; 2010; 160(Pt 1):739-43. PubMed ID: 20841784 [TBL] [Abstract][Full Text] [Related]
8. Agile text mining for the 2014 i2b2/UTHealth Cardiac risk factors challenge. Cormack J; Nath C; Milward D; Raja K; Jonnalagadda SR J Biomed Inform; 2015 Dec; 58 Suppl(0):S120-S127. PubMed ID: 26209007 [TBL] [Abstract][Full Text] [Related]
9. Design of an extensive information representation scheme for clinical narratives. Deléger L; Campillos L; Ligozat AL; Névéol A J Biomed Semantics; 2017 Sep; 8(1):37. PubMed ID: 28893314 [TBL] [Abstract][Full Text] [Related]
10. Automatic extraction of numerical values from unstructured data in EHRs. Bigeard E; Jouhet V; Mougin F; Thiessard F; Grabar N Stud Health Technol Inform; 2015; 210():50-4. PubMed ID: 25991100 [TBL] [Abstract][Full Text] [Related]
11. NLP based congestive heart failure case finding: A prospective analysis on statewide electronic medical records. Wang Y; Luo J; Hao S; Xu H; Shin AY; Jin B; Liu R; Deng X; Wang L; Zheng L; Zhao Y; Zhu C; Hu Z; Fu C; Hao Y; Zhao Y; Jiang Y; Dai D; Culver DS; Alfreds ST; Todd R; Stearns F; Sylvester KG; Widen E; Ling XB Int J Med Inform; 2015 Dec; 84(12):1039-47. PubMed ID: 26254876 [TBL] [Abstract][Full Text] [Related]
12. Text mining and information analysis of health documents. Suominen H Artif Intell Med; 2014 Jul; 61(3):127-30. PubMed ID: 24998391 [No Abstract] [Full Text] [Related]
13. Retrieving Clinical and Omic Data from Electronic Health Records. Cabot C; Lelong R; Grosjean J; Soualmia LF; Darmoni SJ Stud Health Technol Inform; 2016; 221():115. PubMed ID: 27071889 [No Abstract] [Full Text] [Related]
14. Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. Chapman WW; Nadkarni PM; Hirschman L; D'Avolio LW; Savova GK; Uzuner O J Am Med Inform Assoc; 2011; 18(5):540-3. PubMed ID: 21846785 [No Abstract] [Full Text] [Related]
15. Secondary use of electronic health records for building cohort studies through top-down information extraction. Kreuzthaler M; Schulz S; Berghold A J Biomed Inform; 2015 Feb; 53():188-95. PubMed ID: 25451102 [TBL] [Abstract][Full Text] [Related]
16. Integrated Perspectives on Clinical Decision Support: A Comparative Analysis of Knowledge Management Approaches. Grob M; Jenders RA; Rappelsberger A; Adlassnig KP Stud Health Technol Inform; 2024 Aug; 316():1822-1826. PubMed ID: 39176845 [TBL] [Abstract][Full Text] [Related]
17. Correlating mammographic and pathologic findings in clinical decision support using natural language processing and data mining methods. Patel TA; Puppala M; Ogunti RO; Ensor JE; He T; Shewale JB; Ankerst DP; Kaklamani VG; Rodriguez AA; Wong ST; Chang JC Cancer; 2017 Jan; 123(1):114-121. PubMed ID: 27571243 [TBL] [Abstract][Full Text] [Related]
18. Functionality of Triggers for Epilepsy Patients Assessed by Text and Data Mining of Medical and Nursing Records. Kivekäs E; Kinnunen UM; Paananen P; Kälviäinen R; Haatainen K; Saranto K Stud Health Technol Inform; 2016; 225():128-32. PubMed ID: 27332176 [TBL] [Abstract][Full Text] [Related]
19. An efficient pancreatic cyst identification methodology using natural language processing. Mehrabi S; Schmidt CM; Waters JA; Beesley C; Krishnan A; Kesterson J; Dexter P; Al-Haddad MA; Tierney WM; Palakal M Stud Health Technol Inform; 2013; 192():822-6. PubMed ID: 23920672 [TBL] [Abstract][Full Text] [Related]
20. From data mining rules to medical logical modules and medical advices. Gomoi V; Vida M; Robu R; Stoicu-Tivadar V; Bernad E; Lupşe O Stud Health Technol Inform; 2013; 192():1094. PubMed ID: 23920868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]