BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22382486)

  • 1. Small non-coding RNAs govern mammary gland tumorigenesis.
    Yu Z; Pestell RG
    J Mammary Gland Biol Neoplasia; 2012 Mar; 17(1):59-64. PubMed ID: 22382486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncoding RNAs involved in mammary gland development and tumorigenesis: there's a long way to go.
    Shore AN; Herschkowitz JI; Rosen JM
    J Mammary Gland Biol Neoplasia; 2012 Mar; 17(1):43-58. PubMed ID: 22402938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-coding RNAs as regulators of mammary development and breast cancer.
    Piao HL; Ma L
    J Mammary Gland Biol Neoplasia; 2012 Mar; 17(1):33-42. PubMed ID: 22350981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammary gland development & breast cancer; connecting the dots by non-coding RNAs.
    Behbod F; Rosen JM
    J Mammary Gland Biol Neoplasia; 2012 Mar; 17(1):1-2. PubMed ID: 22402939
    [No Abstract]   [Full Text] [Related]  

  • 5. Emerging functions of microRNA-146a/b in development and breast cancer: microRNA-146a/b in development and breast cancer.
    Elsarraj HS; Stecklein SR; Valdez K; Behbod F
    J Mammary Gland Biol Neoplasia; 2012 Mar; 17(1):79-87. PubMed ID: 22350993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin remodeling in mammary gland differentiation and breast tumorigenesis.
    Huang TH; Esteller M
    Cold Spring Harb Perspect Biol; 2010 Sep; 2(9):a004515. PubMed ID: 20610549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-coding RNAs in Mammary Gland Development and Disease.
    Sandhu GK; Milevskiy MJG; Wilson W; Shewan AM; Brown MA
    Adv Exp Med Biol; 2016; 886():121-153. PubMed ID: 26659490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RUNX2 in mammary gland development and breast cancer.
    Ferrari N; McDonald L; Morris JS; Cameron ER; Blyth K
    J Cell Physiol; 2013 Jun; 228(6):1137-42. PubMed ID: 23169547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemokine receptor CCR7 promotes mammary tumorigenesis through amplification of stem-like cells.
    Boyle ST; Ingman WV; Poltavets V; Faulkner JW; Whitfield RJ; McColl SR; Kochetkova M
    Oncogene; 2016 Jan; 35(1):105-15. PubMed ID: 25772241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miRNAs in breast cancer tumorigenesis (Review).
    Zhang ZJ; Ma SL
    Oncol Rep; 2012 Apr; 27(4):903-10. PubMed ID: 22200848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ataxia telangiectasia mutated (ATM) inhibition transforms human mammary gland epithelial cells.
    Mandriota SJ; Buser R; Lesne L; Stouder C; Favaudon V; Maechler P; Béna F; Clément V; Rüegg C; Montesano R; Sappino AP
    J Biol Chem; 2010 Apr; 285(17):13092-106. PubMed ID: 20177072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six1 overexpression in mammary cells induces genomic instability and is sufficient for malignant transformation.
    Coletta RD; Christensen KL; Micalizzi DS; Jedlicka P; Varella-Garcia M; Ford HL
    Cancer Res; 2008 Apr; 68(7):2204-13. PubMed ID: 18381426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional control of the cell cycle in mammary gland development and tumorigenesis.
    Coletta RD; Jedlicka P; Gutierrez-Hartmann A; Ford HL
    J Mammary Gland Biol Neoplasia; 2004 Jan; 9(1):39-53. PubMed ID: 15082917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A prognosis classifier for breast cancer based on conserved gene regulation between mammary gland development and tumorigenesis: a multiscale statistical model.
    Tian Y; Chen B; Guan P; Kang Y; Lu Z
    PLoS One; 2013; 8(4):e60131. PubMed ID: 23565194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development.
    Fu NY; Nolan E; Lindeman GJ; Visvader JE
    Physiol Rev; 2020 Apr; 100(2):489-523. PubMed ID: 31539305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the D492 Cell Lines to Explore Breast Morphogenesis, EMT and Cancer Progression in 3D Culture.
    Briem E; Ingthorsson S; Traustadottir GA; Hilmarsdottir B; Gudjonsson T
    J Mammary Gland Biol Neoplasia; 2019 Jun; 24(2):139-147. PubMed ID: 30684066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reprogramming of Small Noncoding RNA Populations in Peripheral Blood Reveals Host Biomarkers for Latent and Active Mycobacterium tuberculosis Infection.
    de Araujo LS; Ribeiro-Alves M; Leal-Calvo T; Leung J; Durán V; Samir M; Talbot S; Tallam A; Mello FCQ; Geffers R; Saad MHF; Pessler F
    mBio; 2019 Dec; 10(6):. PubMed ID: 31796535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epigenetic landscape of mammary gland development and functional differentiation.
    Rijnkels M; Kabotyanski E; Montazer-Torbati MB; Hue Beauvais C; Vassetzky Y; Rosen JM; Devinoy E
    J Mammary Gland Biol Neoplasia; 2010 Mar; 15(1):85-100. PubMed ID: 20157770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of transgenic IGF-IR overexpression on mammary development and tumorigenesis.
    Jones RA; Moorehead RA
    J Mammary Gland Biol Neoplasia; 2008 Dec; 13(4):407-13. PubMed ID: 19002570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Emerging Picture of Human Breast Cancer as a Stem Cell-based Disease.
    Cobaleda C; Cruz JJ; González-Sarmiento R; Sánchez-García I; Pérez-Losada J
    Stem Cell Rev; 2008; 4(2):67-79. PubMed ID: 18401767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.