These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 22382734)
1. Novel porous scaffolds of poly(lactic acid) produced by phase-separation using room temperature ionic liquid and the assessments of biocompatibility. Lee HY; Jin GZ; Shin US; Kim JH; Kim HW J Mater Sci Mater Med; 2012 May; 23(5):1271-9. PubMed ID: 22382734 [TBL] [Abstract][Full Text] [Related]
2. A novel therapeutic design of microporous-structured biopolymer scaffolds for drug loading and delivery. Dorj B; Won JE; Purevdorj O; Patel KD; Kim JH; Lee EJ; Kim HW Acta Biomater; 2014 Mar; 10(3):1238-50. PubMed ID: 24239677 [TBL] [Abstract][Full Text] [Related]
3. Enhancing osteoconduction of PLLA-based nanocomposite scaffolds for bone regeneration using different biomimetic signals to MSCs. Ciapetti G; Granchi D; Devescovi V; Baglio SR; Leonardi E; Martini D; Jurado MJ; Olalde B; Armentano I; Kenny JM; Walboomers FX; Alava JI; Baldini N Int J Mol Sci; 2012; 13(2):2439-2458. PubMed ID: 22408463 [TBL] [Abstract][Full Text] [Related]
4. [Preparation and osteogenic properties of poly ( Chen S; Du C Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1123-1130. PubMed ID: 30701727 [TBL] [Abstract][Full Text] [Related]
5. Tubular perfusion system culture of human mesenchymal stem cells on poly-L-lactic acid scaffolds produced using a supercritical carbon dioxide-assisted process. Pisanti P; Yeatts AB; Cardea S; Fisher JP; Reverchon E J Biomed Mater Res A; 2012 Oct; 100(10):2563-72. PubMed ID: 22528808 [TBL] [Abstract][Full Text] [Related]
6. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029 [TBL] [Abstract][Full Text] [Related]
7. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386 [TBL] [Abstract][Full Text] [Related]
8. Growth on poly(L-lactic acid) porous scaffold preserves CD73 and CD90 immunophenotype markers of rat bone marrow mesenchymal stromal cells. Zamparelli A; Zini N; Cattini L; Spaletta G; Dallatana D; Bassi E; Barbaro F; Iafisco M; Mosca S; Parrilli A; Fini M; Giardino R; Sandri M; Sprio S; Tampieri A; Maraldi NM; Toni R J Mater Sci Mater Med; 2014 Oct; 25(10):2421-36. PubMed ID: 24997163 [TBL] [Abstract][Full Text] [Related]
9. Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method. Zhao XF; Li XD; Kang YQ; Yuan Q Int J Nanomedicine; 2011; 6():1385-90. PubMed ID: 21760732 [TBL] [Abstract][Full Text] [Related]
10. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds. Zong C; Qian X; Tang Z; Hu Q; Chen J; Gao C; Tang R; Tong X; Wang J J Biomed Nanotechnol; 2014 Jun; 10(6):1091-104. PubMed ID: 24749403 [TBL] [Abstract][Full Text] [Related]
13. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Han SH; Cha M; Jin YZ; Lee KM; Lee JH Biomed Mater; 2020 Dec; 16(1):015019. PubMed ID: 32698169 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
15. Human osteoprogenitor bone formation using encapsulated bone morphogenetic protein 2 in porous polymer scaffolds. Yang XB; Whitaker MJ; Sebald W; Clarke N; Howdle SM; Shakesheff KM; Oreffo RO Tissue Eng; 2004; 10(7-8):1037-45. PubMed ID: 15363161 [TBL] [Abstract][Full Text] [Related]
16. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering. Ni P; Fu S; Fan M; Guo G; Shi S; Peng J; Luo F; Qian Z Int J Nanomedicine; 2011; 6():3065-75. PubMed ID: 22163160 [TBL] [Abstract][Full Text] [Related]
17. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566 [TBL] [Abstract][Full Text] [Related]
18. Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity. Claase MB; de Bruijn JD; Grijpma DW; Feijen J J Mater Sci Mater Med; 2007 Jul; 18(7):1299-307. PubMed ID: 17268874 [TBL] [Abstract][Full Text] [Related]
19. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Jung Y; Kim SS; Kim YH; Kim SH; Kim BS; Kim S; Choi CY; Kim SH Biomaterials; 2005 Nov; 26(32):6314-22. PubMed ID: 15913759 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of BMP-2-derived peptides on 3D-printed porous scaffolds for enhanced osteogenesis. Zhang X; Lou Q; Wang L; Min S; Zhao M; Quan C Biomed Mater; 2019 Nov; 15(1):015002. PubMed ID: 31597124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]