These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 22383043)
21. Ion conducting polymer microelectrodes for interfacing with neural networks. Nyberg T; Shimada A; Torimitsu K J Neurosci Methods; 2007 Feb; 160(1):16-25. PubMed ID: 17000006 [TBL] [Abstract][Full Text] [Related]
22. Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. Istamboulie G; Sikora T; Jubete E; Ochoteco E; Marty JL; Noguer T Talanta; 2010 Aug; 82(3):957-61. PubMed ID: 20678652 [TBL] [Abstract][Full Text] [Related]
23. Conducting polymer transistors making use of activated carbon gate electrodes. Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960 [TBL] [Abstract][Full Text] [Related]
24. Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells. Kwon J; Ganapathy V; Kim YH; Song KD; Park HG; Jun Y; Yoo PJ; Park JH Nanoscale; 2013 Sep; 5(17):7838-43. PubMed ID: 23852259 [TBL] [Abstract][Full Text] [Related]
25. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces. Mantione D; Del Agua I; Schaafsma W; Diez-Garcia J; Castro B; Sardon H; Mecerreyes D Macromol Biosci; 2016 Aug; 16(8):1227-38. PubMed ID: 27168277 [TBL] [Abstract][Full Text] [Related]
27. An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Kleber C; Bruns M; Lienkamp K; Rühe J; Asplund M Acta Biomater; 2017 Aug; 58():365-375. PubMed ID: 28578108 [TBL] [Abstract][Full Text] [Related]
28. Electrodes Modified with Composite Layers Based on Poly(3,4-ethylenedioxythiophene) as Sensors for Paracetamol. Sipa K; Socha E; Skrzypek S; Krzyczmonik P Anal Sci; 2017; 33(3):287-292. PubMed ID: 28302968 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. Kolarcik CL; Catt K; Rost E; Albrecht IN; Bourbeau D; Du Z; Kozai TD; Luo X; Weber DJ; Cui XT J Neural Eng; 2015 Feb; 12(1):016008. PubMed ID: 25485675 [TBL] [Abstract][Full Text] [Related]
30. PEDOT-CNT-Coated Low-Impedance, Ultra-Flexible, and Brain-Conformable Micro-ECoG Arrays. Castagnola E; Maiolo L; Maggiolini E; Minotti A; Marrani M; Maita F; Pecora A; Angotzi GN; Ansaldo A; Boffini M; Fadiga L; Fortunato G; Ricci D IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):342-50. PubMed ID: 25073174 [TBL] [Abstract][Full Text] [Related]
31. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Wang W; Xu G; Cui XT; Sheng G; Luo X Biosens Bioelectron; 2014 Aug; 58():153-6. PubMed ID: 24632460 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical deposition of conductive polymers onto magnesium microwires for neural electrode applications. Zhang C; Driver N; Tian Q; Jiang W; Liu H J Biomed Mater Res A; 2018 Jul; 106(7):1887-1895. PubMed ID: 29520971 [TBL] [Abstract][Full Text] [Related]
33. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. Liu R; Duay J; Lee SB ACS Nano; 2010 Jul; 4(7):4299-307. PubMed ID: 20590128 [TBL] [Abstract][Full Text] [Related]
34. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation. Kim R; Nam Y J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604 [TBL] [Abstract][Full Text] [Related]
35. A PEDOT: PSS/GO fiber microelectrode fabricated by microfluidic spinning for dopamine detection in human serum and PC12 cells. Zhao Z; Hou Y; Zhang H; Guo J; Wang J Mikrochim Acta; 2024 Jun; 191(6):362. PubMed ID: 38822867 [TBL] [Abstract][Full Text] [Related]
36. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release. Castagnola E; Carli S; Vomero M; Scarpellini A; Prato M; Goshi N; Fadiga L; Kassegne S; Ricci D Biointerphases; 2017 Jul; 12(3):031002. PubMed ID: 28704999 [TBL] [Abstract][Full Text] [Related]
37. Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes. Chiu JY; Yu CM; Yen MJ; Chen LC Biosens Bioelectron; 2009 Mar; 24(7):2015-20. PubMed ID: 19042119 [TBL] [Abstract][Full Text] [Related]
38. Polymer films on electrodes: investigation of ion transport at poly(3,4-ethylenedioxythiophene) films by scanning electrochemical microscopy. Yang N; Zoski CG Langmuir; 2006 Dec; 22(25):10338-47. PubMed ID: 17129001 [TBL] [Abstract][Full Text] [Related]
39. Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Richardson-Burns SM; Hendricks JL; Foster B; Povlich LK; Kim DH; Martin DC Biomaterials; 2007 Mar; 28(8):1539-52. PubMed ID: 17169420 [TBL] [Abstract][Full Text] [Related]
40. Electrochemical fabrication of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibrils on microfabricated neural prosthetic devices. Yang J; Lipkin K; Martin DC J Biomater Sci Polym Ed; 2007; 18(8):1075-89. PubMed ID: 17705999 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]