BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22383307)

  • 1. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae.
    Sun J; Shao Z; Zhao H; Nair N; Wen F; Xu JH; Zhao H
    Biotechnol Bioeng; 2012 Aug; 109(8):2082-92. PubMed ID: 22383307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of multiple strategies to enhance oleanolic acid biosynthesis by engineered Saccharomyces cerevisiae.
    Cheng X; Pang Y; Ban Y; Cui S; Shu T; Lv B; Li C
    Bioresour Technol; 2024 Jun; 401():130716. PubMed ID: 38641301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast.
    Wang J; Zhou X; Li K; Wang H; Zhang C; Shi Y; Yao M; Wang Y; Xiao W
    J Agric Food Chem; 2024 May; 72(18):10459-10468. PubMed ID: 38666490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Characterization of F3H Gene and Optimization of Dihydrokaempferol Biosynthesis in
    Chen Q; Song D; Sun X; Tian Y; Yan Z; Min T; Wang H; Wang L
    Molecules; 2024 May; 29(10):. PubMed ID: 38792058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism.
    Zhang J; Petersen SD; Radivojevic T; Ramirez A; Pérez-Manríquez A; Abeliuk E; Sánchez BJ; Costello Z; Chen Y; Fero MJ; Martin HG; Nielsen J; Keasling JD; Jensen MK
    Nat Commun; 2020 Sep; 11(1):4880. PubMed ID: 32978375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Standardized Set of MoClo-Compatible Inducible Promoter Systems for Tunable Gene Expression in Yeast.
    O'Laughlin R; Tran Q; Lezia A; Ngamkanjanarat W; Emmanuele P; Hao N; Hasty J
    ACS Synth Biol; 2024 Jan; 13(1):85-102. PubMed ID: 38079574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of synthetic promoters for consistency of gene expression across growth phases and scale in
    Presnell KV; Melhem O; Coleman SM; Morse NJ; Alper HS
    Synth Syst Biotechnol; 2024 Jun; 9(2):330-339. PubMed ID: 38549617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters.
    Blazeck J; Garg R; Reed B; Alper HS
    Biotechnol Bioeng; 2012 Nov; 109(11):2884-95. PubMed ID: 22565375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production.
    Feng X; Lian J; Zhao H
    Metab Eng; 2015 Jan; 27():10-19. PubMed ID: 25466225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.
    Bao Z; Xiao H; Liang J; Zhang L; Xiong X; Sun N; Si T; Zhao H
    ACS Synth Biol; 2015 May; 4(5):585-94. PubMed ID: 25207793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae.
    Jensen NB; Strucko T; Kildegaard KR; David F; Maury J; Mortensen UH; Forster J; Nielsen J; Borodina I
    FEMS Yeast Res; 2014 Mar; 14(2):238-48. PubMed ID: 24151867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains.
    Lian J; Si T; Nair NU; Zhao H
    Metab Eng; 2014 Jul; 24():139-49. PubMed ID: 24853351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems.
    DiCarlo JE; Norville JE; Mali P; Rios X; Aach J; Church GM
    Nucleic Acids Res; 2013 Apr; 41(7):4336-43. PubMed ID: 23460208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Saccharomyces cerevisiae promoters for heterologous gene expression in Kluyveromyces marxianus.
    Lee KS; Kim JS; Heo P; Yang TJ; Sung YJ; Cheon Y; Koo HM; Yu BJ; Seo JH; Jin YS; Park JC; Kweon DH
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2029-41. PubMed ID: 22911091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression-level optimization of a multi-enzyme pathway in the absence of a high-throughput assay.
    Lee ME; Aswani A; Han AS; Tomlin CJ; Dueber JE
    Nucleic Acids Res; 2013 Dec; 41(22):10668-78. PubMed ID: 24038353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae.
    Shen MW; Fang F; Sandmeyer S; Da Silva NA
    Yeast; 2012 Dec; 29(12):495-503. PubMed ID: 23166051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoter engineering: recent advances in controlling transcription at the most fundamental level.
    Blazeck J; Alper HS
    Biotechnol J; 2013 Jan; 8(1):46-58. PubMed ID: 22890821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Customized optimization of metabolic pathways by combinatorial transcriptional engineering.
    Du J; Yuan Y; Si T; Lian J; Zhao H
    Nucleic Acids Res; 2012 Oct; 40(18):e142. PubMed ID: 22718979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis.
    Feng X; Zhao H
    Microb Cell Fact; 2013 Nov; 12():114. PubMed ID: 24245823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.