BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 22383307)

  • 21. Enzymatic synthesis of glutathione using engineered Saccharomyces cerevisiae.
    Chen JL; Xie L; Cai JJ; Yang CS; Duan XH
    Biotechnol Lett; 2013 Aug; 35(8):1259-64. PubMed ID: 23543324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Xylan catabolism is improved by blending bioprospecting and metabolic pathway engineering in Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Biotechnol J; 2015 Apr; 10(4):575-83. PubMed ID: 25651533
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorescence based assay of GAL system in yeast Saccharomyces cerevisiae.
    Stagoj MN; Comino A; Komel R
    FEMS Microbiol Lett; 2005 Mar; 244(1):105-10. PubMed ID: 15727828
    [TBL] [Abstract][Full Text] [Related]  

  • 24. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.
    Guo Y; Dong J; Zhou T; Auxillos J; Li T; Zhang W; Wang L; Shen Y; Luo Y; Zheng Y; Lin J; Chen GQ; Wu Q; Cai Y; Dai J
    Nucleic Acids Res; 2015 Jul; 43(13):e88. PubMed ID: 25956650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing synthetic hybrid promoters to increase constitutive or diauxic shift-induced expression in Saccharomyces cerevisiae.
    Wang J; Zhai H; Rexida R; Shen Y; Hou J; Bao X
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30203049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway.
    Kocharin K; Siewers V; Nielsen J
    Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering cellular redox balance in Saccharomyces cerevisiae for improved production of L-lactic acid.
    Lee JY; Kang CD; Lee SH; Park YK; Cho KM
    Biotechnol Bioeng; 2015 Apr; 112(4):751-8. PubMed ID: 25363674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordinated induction of multi-gene pathways in Saccharomyces cerevisiae.
    Liang J; Ning JC; Zhao H
    Nucleic Acids Res; 2013 Feb; 41(4):e54. PubMed ID: 23262224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae.
    Hara KY; Kiriyama K; Inagaki A; Nakayama H; Kondo A
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1313-9. PubMed ID: 22234534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs in Saccharomyces cerevisiae.
    Rugbjerg P; Knuf C; Förster J; Sommer MO
    FEMS Yeast Res; 2015 Dec; 15(8):. PubMed ID: 26392044
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of gene orientation and use of multiple promoters on the expression of XYL1 and XYL2 in Saccharomyces cerevisiae.
    Bae JY; Laplaza J; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):69-78. PubMed ID: 18425613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and characterization of AND-gate dynamic controllers with a modular synthetic GAL1 core promoter in Saccharomyces cerevisiae.
    Teo WS; Chang MW
    Biotechnol Bioeng; 2014 Jan; 111(1):144-51. PubMed ID: 23860786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of a gfp gene in Penicillium nordicum under control of the promoter of the ochratoxin A polyketide synthase gene.
    Schmidt-Heydt M; Schunck T; Geisen R
    Int J Food Microbiol; 2009 Jul; 133(1-2):161-6. PubMed ID: 19525025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A rapid method to determine the stress status of Saccharomyces cerevisiae by monitoring the expression of a Hsp12:green fluorescent protein (GFP) construct under the control of the Hsp12 promoter.
    Karreman RJ; Lindsey GG
    J Biomol Screen; 2005 Apr; 10(3):253-9. PubMed ID: 15809321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus.
    Luo Y; Zhang L; Barton KW; Zhao H
    ACS Synth Biol; 2015 Sep; 4(9):1001-10. PubMed ID: 25924180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induced gene expression in industrial Saccharomyces pastorianus var. carlsbergensis TUM 34/70: evaluation of temperature and ethanol inducible native promoters.
    Fischer S; Engstler C; Procopio S; Becker T
    FEMS Yeast Res; 2016 May; 16(3):. PubMed ID: 26882929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae].
    Shen Y; Wang Y; Bao XM; Qu YB
    Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):636-40. PubMed ID: 15969099
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell growth restoration and high level protein expression by the promoter of hexose transporter, HXT7, from Saccharomyces cerevisiae.
    Lai MT; Liu DY; Hseu TH
    Biotechnol Lett; 2007 Aug; 29(8):1287-92. PubMed ID: 17520177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae.
    Asadollahi MA; Maury J; Schalk M; Clark A; Nielsen J
    Biotechnol Bioeng; 2010 May; 106(1):86-96. PubMed ID: 20091767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol.
    Toivari MH; Maaheimo H; Penttilä M; Ruohonen L
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.